cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050970 Numerator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} (4k+1)^(-n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 61, 17, 277, 31, 50521, 691, 540553, 5461, 199360981, 929569, 3878302429, 3202291, 2404879675441, 221930581, 14814847529501, 4722116521, 69348874393137901, 56963745931, 238685140977801337, 14717667114151
Offset: 1

Views

Author

Keywords

Comments

Reduced numerators of Favard constants.

Examples

			The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
		

Crossrefs

Denominators: A068205. See also A050971.

Programs

  • Maple
    S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
    S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n * n!):
    A050970 := n -> numer(EZ(n-1)): seq(A050970(n), n=1..26); # Peter Luschny, Aug 02 2017
    # alternative
    A050970 := proc(n)
        if type(n,'even') then
            (-1)^(n/2)*2^(n-2)/(n-1)!*euler(n-1,0) ;
        else
            (-1)^((n-1)/2)*2^(n-2)/(n-1)!*euler(n-1,1/2) ;
        end if;
        %/2^n ;
        numer(%) ;
    end proc:
    seq(A050970(n),n=1..20) ; # R. J. Mathar, Jun 26 2024
  • Mathematica
    s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := Numerator[FullSimplify[s[n]/Pi^n]]; a[1] = 1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 25 2012 *)
    s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Numerator, {n, 1, 26}] (* Jean-François Alcover, May 13 2013 *)
    a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Numerator; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Jun 20 2014 *)
    Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
    Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( 1 / (1 - tan(x/4 + x * O(x^n))), n)))}; /* Michael Somos, Nov 11 2014 */

Formula

There is a simple formula in terms of Euler and Bernoulli numbers.
a(2n) = A046976(n), a(2n+1) = A089171(n+1) (conjectured).
Numerator of coefficients of expansion of (sec(x/2) + tan(x/2) + 1)/2 in powers of x. - Sergei N. Gladkovskii, Nov 11 2014

Extensions

Entry revised by N. J. A. Sloane, Mar 24 2002

A046977 Denominators of Taylor series for sec(x). Also denominators of Taylor series for sech(x) = 1/cosh(x).

Original entry on oeis.org

1, 2, 24, 720, 8064, 3628800, 95800320, 87178291200, 4184557977600, 6402373705728000, 97316080327065600, 1124000727777607680000, 9545360026665222144000, 403291461126605635584000000, 3209350995912777478963200000, 265252859812191058636308480000000
Offset: 0

Views

Author

Keywords

Examples

			sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + 277/8064*x^8 + 50521/3628800*x^10 + ...
sech(x) = 1 - 1/2 *x^2 + 5/24 *x^4 - 61/720 *x^6 + 277/8064 *x^8 - ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Programs

  • Maple
    ZBS := z -> (Zeta(0,z,1/4) - Zeta(0,z,3/4))/(2^z-2):
    R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:
    seq(denom(R(2*n+1)), n=0..16); # Peter Luschny, Aug 25 2015
  • Mathematica
    Table[ EulerE[n]/n! // Denominator, {n, 0, 30, 2}] (* Jean-François Alcover, Oct 04 2012 *)

Formula

A046976(n)/a(n)= A000364(n)/(2n)!.
Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = denominator(R(2*n+1)) and A046976(n) = numerator(R(2*n+1)). - Peter Luschny, Aug 25 2015

A053005 Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.

Original entry on oeis.org

4, 32, 1536, 184320, 8257536, 14863564800, 1569592442880, 5713316492083200, 1096956766479974400, 6713375410857443328000, 408173224980132554342400, 18857602994082124010618880000, 640578267860512766391484416000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Examples

			beta(5) = 5*Pi^5/1536 so a(2)=1536.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).

Crossrefs

Cf. A046976.

Programs

  • Mathematica
    beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 19 2013 *)

A273192 Unsigned numerators of the nonzero coefficients in the expansion of 1/hypergeom([], [Seq_{k=1..m-1} k/m], (x/m)^m) for m = 4.

Original entry on oeis.org

1, 1, 23, 33661, 20125603, 288294050521, 335455351400261, 60921822444067346581, 42334470849679755333739, 125339574046311949415000577841, 3763027389086366356144399489191943
Offset: 0

Views

Author

Peter Luschny, Jun 06 2016

Keywords

Crossrefs

Cf. A000012 (m=1), A046976 (m=2), A273193, A273194.

Programs

  • Maple
    Hlist := proc(m, size) local H, S;
    H := m -> hypergeom([], [seq(k/m, k=1..m-1)], (x/m)^m);
    S := m -> series(1/H(m), x, (m+1)*size);
    seq((-1)^n*numer(coeff(S(m), x, m*n)), n=0..size) end:
    A273192_list := size -> Hlist(4, size);

A162445 A sequence related to the Beta function.

Original entry on oeis.org

1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
Offset: 0

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

We define F(z) = Beta(1/2-z/2,1/2+z/2)/Beta(1/2,1/2) = 1/sin(Pi*(1+z)/2) with Beta(z,w) the Beta function. See A008956 for a closely related function.
For the Taylor series expansion of F(z) we can write F(z) = sum(b(n)*(Pi*z)^(2*n)/a(n), n=0..infinity) with b(n) = A046976(n) and a(n) the sequence given above.
We can also write F(z) = sum(c(n)*(Pi*z)^(2*n)/d(n), n=0..infinity) with c(n) = A000364(n) and d(n) = A067624(n).
If p(n) is the exponent of the prime factor 2 in a(n) than p(n) = A120738(n) and 2^p(n) = A061549(n) = abs((4*n)!!/A117972(n)).

Crossrefs

Bisection of A050971
Equals 2^(2*n)*A046977(n)

Programs

  • Mathematica
    Denominator[Table[EulerE[2n]/(4n)!!,{n,0,20}]] (* Harvey P. Dale, Jun 23 2013 *)

Formula

a(n) = denom(euler(2*n)/(4*n)!!)
Showing 1-5 of 5 results.