cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A050971 4*Denominator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} ((4k+1)^(-n)).

Original entry on oeis.org

1, 2, 8, 24, 384, 240, 46080, 40320, 2064384, 725760, 3715891200, 159667200, 392398110720, 12454041600, 1428329123020800, 20922789888000, 274239191619993600, 711374856192000, 1678343852714360832000
Offset: 1

Views

Author

Keywords

Comments

Reduced denominators of the Favard constants.

Examples

			The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
		

Crossrefs

Cf. A068205, A050970 (numerators).

Programs

  • Maple
    S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
    S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n*n!):
    A050971 := n -> denom(EZ(n-1)): seq(A050971(n), n=1..19); # Peter Luschny, Aug 02 2017
  • Mathematica
    s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := 4*s[n]/Pi^n ; a[1] = 1; Table[a[n], {n, 1, 19}] // Denominator (* Jean-François Alcover, Nov 05 2012 *)
    a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Denominator; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 20 2014 *)
    Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Denominator (* Eric W. Weisstein, Aug 02 2017 *)
    Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Denominator (* Eric W. Weisstein, Aug 02 2017 *)

Formula

There is a simple formula in terms of Euler and Bernoulli numbers.

Extensions

Entry revised by N. J. A. Sloane, Mar 24 2002

A089171 Numerators of series coefficients of 1/(1 + cosh(sqrt(x))).

Original entry on oeis.org

1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -56963745931, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441
Offset: 0

Views

Author

Wouter Meeussen, Dec 07 2003

Keywords

Comments

Unsigned version is equal to A002425 up to n=11, but differs beyond that point.
Unsigned version: numerators of series coefficients of 1/(1 + cos(sqrt(x))); see Mathematica. - Clark Kimberling, Dec 06 2016

Crossrefs

Programs

  • Maple
    with(numtheory): c := n->(2^(2*n)-1)*bernoulli(2*n)/(2*n)!; seq(numer(c(n)),n=1..20); # C. Ronaldo
  • Mathematica
    Numerator[CoefficientList[Series[1/(1+Cosh[Sqrt[x]]), {x, 0, 24}], x]]
    Numerator[CoefficientList[Series[1/(1+Cos[Sqrt[x]]), {x, 0, 30}], x]]
    (* unsigned version, Clark Kimberling, Dec 06 2016 *)

Formula

a(n) = numerator(c(n+1)) where c(n)=(2^(2*n)-1)*B(2*n)/(2*n)!, B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Numerators of expansion of cosec(x)-cot(x) = 1/2*x+1/4*x^3/3!+1/2*x^5/5!+17/8*x^7/7!+31/2*x^9/9!+... - Ralf Stephan, Dec 21 2004 (Comment was applied to wrong entry, corrected by Alessandro Musesti (musesti(AT)gmail.com), Nov 02 2007)
E.g.f.: 1/sin(x)-cot(x). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: x/G(0); G(k) = 4*k+2-x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: (1+x/(x-2*Q(0)))/2; Q(k) = 8*k+2+x/(1+(2*k+1)*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: x/(x+Q(0)); Q(k) = x+(x^2)/((4*k+1)*(4*k+2)-(4*k+1)*(4*k+2)/(1+(4*k+3)*(4*k+4)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: T(0)/2, where T(k) = 1 - x^2/(x^2 - (4*k+2)*(4*k+6)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2013
Aerated, these are the numerators of the Taylor series coefficients of 2 * tanh(x/2) (cf. A000182 and A198631). - Tom Copeland, Oct 19 2016

A046990 Numerators of Taylor series for log(1/cos(x)). Also from log(cos(x)).

Original entry on oeis.org

0, 1, 1, 1, 17, 31, 691, 10922, 929569, 3202291, 221930581, 9444233042, 56963745931, 29435334228302, 2093660879252671, 344502690252804724, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 28259319101491102261334882
Offset: 0

Views

Author

Keywords

Examples

			log(1/cos(x)) = 1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...
log(cos(x)) = -(1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...).
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:3 at page 301.

Crossrefs

Programs

  • Maple
    q:= proc(n) add((-1)^k*combinat[eulerian1](n-1,k), k=0..n-1) end: A046990:= n -> numer((-1)^(n-1)*q(2*n)/(2*n)!):
    seq(A046990(n),n=0..19);  # Peter Luschny, Nov 16 2012
  • Mathematica
    Join[{0},Numerator[Select[CoefficientList[Series[Log[1/Cos[x]],{x,0,40}], x],#!=0&]]] (* Harvey P. Dale, Jul 27 2011 *)
    a[n_] := Numerator[((-4)^n-(-16)^n)*BernoulliB[2*n]/2/n/(2*n)!]; a[0] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 11 2014, after Charles R Greathouse IV *)
  • PARI
    a(n)=numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!) \\ Charles R Greathouse IV, Nov 06 2013
    
  • PARI
    {a(n) = if( n<1, 0, my(m = 2*n); numerator( polcoeff( -log(cos(x + x * O(x^m))), m)))}; /* Michael Somos, Jun 03 2019 */
  • Sage
    # uses[eulerian1 from A173018]
    def A046990(n):
        def q(n):
            return add((-1)^k*eulerian1(n-1, k) for k in (0..n-1))
        return ((-1)^(n-1)*q(2*n)/factorial(2*n)).numer()
    [A046990(n) for n in (0..19)]  # Peter Luschny, Nov 16 2012
    

Formula

Let q(n) = Sum_{k=0..n-1} (-1)^k*A201637(n-1,k) then a(n) = numerator((-1)^(n-1)*q(2*n)/(2*n)!). - Peter Luschny, Nov 16 2012

A245198 Decimal expansion of the Landau-Kolmogorov constant C(3,1) for derivatives in the case L_infinity(-infinity, infinity).

Original entry on oeis.org

1, 0, 4, 0, 0, 4, 1, 9, 1, 1, 5, 2, 5, 9, 5, 2, 0, 5, 7, 2, 6, 5, 0, 2, 8, 4, 1, 2, 1, 7, 8, 9, 4, 2, 6, 9, 3, 1, 6, 8, 9, 0, 2, 6, 7, 0, 1, 8, 6, 6, 3, 1, 0, 5, 4, 8, 4, 8, 7, 9, 5, 5, 4, 0, 1, 0, 0, 0, 5, 3, 1, 5, 5, 6, 9, 8, 6, 3, 4, 3, 8, 6, 8, 0, 3, 0, 2, 8, 3, 1, 8, 3, 9, 5, 3, 7, 8, 7, 4, 3, 3, 6, 4, 3
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

The corresponding Landau-Kolmogorov inequality for the first and third derivative is ||f'|| <= C(3,1) ||f||^(2/3) ||f'''||^(1/3) [see S. Finch ref. for C(n,k) and the general derivative inequalities], where the real-valued function f is defined on (-infinity, infinity), the involved norm being the supremum norm, defined by ||f|| = sup |f(x)|.
Hadamard proved that if f is twice differentiable and both f and f'' are bounded, then ||f'|| <= sqrt(2) ||f||^(1/2) ||f''||^(1/2), and the constant C(2,1) = sqrt(2) is the best possible.
Kolmogorov determined best constants C(n,k), 1 <= k <= n, for the inequality between derivatives in terms of Favard constants (A050970/A050971). These formulas giving C(n,k) include special cases discovered by G. E. Shilov for small values of n and k.
[All comments made after Steven R. Finch].

Examples

			1.0400419115259520572650284121789426931689026701866310548487955401...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[3, 1], 10, 104] // First
    (* or, directly: *) RealDigits[3^(2/3)/2, 10, 104] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(3,1) = 3^(2/3)/2 = (9/8)^(1/3).

A046982 Numerators of Taylor series for tan(x + Pi/4).

Original entry on oeis.org

1, 2, 2, 8, 10, 64, 244, 2176, 554, 31744, 202084, 2830336, 2162212, 178946048, 1594887848, 30460116992, 7756604858, 839461371904, 9619518701764, 232711080902656, 59259390118004, 39611984424992768, 554790995145103208, 955693069653508096
Offset: 0

Views

Author

Keywords

Examples

			1 + 2*x + 2*x^2 + (8/3)*x^3 + (10/3)*x^4 + (64/15)*x^5 + (244/45)*x^6 + ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Cf. A046983.
a(n) = 2^k * A050970(n), for some k>=0 (conjectured).

Programs

  • Mathematica
    nmax = 23; t[0, 1] = 1; t[0, ] = 0; t[n, k_] := t[n, k] = (k-1)*t[n-1, k-1] + (k+1)*t[n-1, k+1]; Numerator[ Table[ Sum[ t[n, k]/n!, {k, 0, n+1}], {n, 0, nmax} ]] (* Jean-François Alcover, Nov 09 2011 *)
    CoefficientList[Series[Tan[x+Pi/4],{x,0,30}],x]//Numerator (* Harvey P. Dale, May 21 2023 *)

A068205 Denominator of S(n)/Pi^n, where S(n) = Sum((4k+1)^(-n),k,-inf,+inf).

Original entry on oeis.org

4, 8, 32, 96, 1536, 960, 184320, 161280, 8257536, 2903040, 14863564800, 638668800, 1569592442880, 49816166400, 5713316492083200, 83691159552000, 1096956766479974400, 2845499424768000, 6713375410857443328000
Offset: 1

Views

Author

N. J. A. Sloane, Mar 24 2002

Keywords

Examples

			The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
		

Crossrefs

Numerators: A050970.

Programs

  • Maple
    A068205 := proc(n)
        if type(n,'even') then
            (-1)^(n/2)*2^(n-2)/(n-1)!*euler(n-1,0) ;
        else
            (-1)^((n-1)/2)*2^(n-2)/(n-1)!*euler(n-1,1/2) ;
        end if;
        %/2^n ;
        denom(%) ;
    end proc:
    seq(A068205(n),n=1..20) ; # R. J. Mathar, Jun 26 2024
  • Mathematica
    s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Denominator, {n, 1, 19}] (* Jean-François Alcover, May 13 2013 *)
    a[n_] := Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Denominator; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 20 2014 *)

Formula

There is a simple formula in terms of Euler and Bernoulli numbers.

A246006 a(2n) = numerator of |Bernoulli(2n)|, a(2n+1) = Euler(2n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 61, 1, 1385, 5, 50521, 691, 2702765, 7, 199360981, 3617, 19391512145, 43867, 2404879675441, 174611, 370371188237525, 854513, 69348874393137901, 236364091, 15514534163557086905, 8553103, 4087072509293123892361, 23749461029, 1252259641403629865468285
Offset: 0

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Primes p which divide at least one a(n) for n<=p-2 are called weakly-irregular primes. For example, 19|a(11), 31|a(23), 37|a(32), 43|a(13), 47|a(15), 59|a(44), 61|a(7), ... - Eric Chen, Nov 26 2014
The weakly-irregular primes below 500 are 19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491. - Eric Chen, Nov 26 2014
A prime can divide more than one a(n) for n<=p-2; for example, 67 divides both a(27) and a(58); additional examples are 101, 149, 157, 241, 263, 307, 311, ... . - Eric Chen, Nov 26 2014
Smallest values of k such that the n-th weakly-irregular prime divides a(k) are 11, 23, 32, 13, 15, 44, 7, 27, 29, 19, 63, 24, 22, 43, 129, 130, 62, 75, ... . - Eric Chen, Nov 26 2014
Smallest prime factors (>= n+2) of a(n) are 1, 1, 1, 1, 1, 1, 1, 61, 1, 277, 1, 19, 691, 43, 1, 47, 3617, 228135437, 43867, 79, 283, 41737, 131, 31, 103, 2137, 657931, 67, 9349, 71, ... . - Eric Chen, Nov 26 2014
The irregular pairs are (61, 7), (277, 9), (19, 11), (2659, 11), (691, 12), (43, 13), (967, 13), (47, 15), (4241723, 15), (3617, 16), (228135437, 17), (43867, 18), (79, 19), (349, 19), (84224971, 19), ... . - Eric Chen, Nov 26 2014

Examples

			Euler(10) = 50521, so a(11) = 50521.
Bernoulli(12) = 691/2730, so a(12) = 691.
		

Crossrefs

Programs

  • Mathematica
    a246006[n_] := If[EvenQ[n], Abs[Numerator[BernoulliB[n]]], Abs[EulerE[n-1]]]; Table[a246006[n], {n, 0, 99}]
  • Python
    from sympy import euler, bernoulli
    def A246006(n): return abs(euler(n-1)) if n&1 else abs(bernoulli(n)).p # Chai Wah Wu, Apr 15 2023

A245294 Decimal expansion of the square root of 6/5.

Original entry on oeis.org

1, 0, 9, 5, 4, 4, 5, 1, 1, 5, 0, 1, 0, 3, 3, 2, 2, 2, 6, 9, 1, 3, 9, 3, 9, 5, 6, 5, 6, 0, 1, 6, 0, 4, 2, 6, 7, 9, 0, 5, 4, 8, 9, 3, 8, 9, 9, 9, 5, 9, 6, 6, 5, 0, 8, 4, 5, 3, 7, 8, 8, 8, 9, 9, 4, 6, 4, 9, 8, 6, 5, 5, 4, 2, 4, 5, 4, 4, 5, 4, 6, 7, 6, 0, 1, 7, 1, 6, 8, 7, 2, 3, 2, 7, 7, 4, 1, 2, 5, 1, 5, 2, 9, 4, 5
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

Decimal expansion of the Landau-Kolmogorov constant C(4,2) for derivatives in the case L_infinity(infinity, infinity).
See A245198.
Apart from the first digit the same as A176057. - R. J. Mathar, Jul 21 2014

Examples

			1.095445115010332226913939565601604267905489389995966508453788899464986554...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[4, 2], 10, 105] // First
    RealDigits[Sqrt[6/5], 10, 100][[1]] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    sqrt(6/5) \\ Charles R Greathouse IV, Aug 26 2017

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(4,2) = sqrt(6/5).
Equals Sum_{k>=0} binomial(2*k,k)/24^k. - Amiram Eldar, Jul 19 2022

A245293 Decimal expansion of the Landau-Kolmogorov constant C(4,1) for derivatives in the case L_infinity(infinity, infinity).

Original entry on oeis.org

1, 0, 8, 0, 9, 6, 0, 1, 2, 3, 8, 4, 5, 6, 2, 7, 5, 1, 5, 1, 8, 8, 0, 8, 0, 1, 5, 0, 6, 3, 6, 5, 4, 5, 6, 4, 9, 2, 3, 7, 5, 7, 7, 0, 7, 4, 7, 2, 5, 5, 2, 3, 4, 3, 8, 0, 1, 3, 5, 6, 6, 4, 4, 2, 5, 9, 2, 7, 5, 9, 9, 0, 9, 7, 9, 0, 6, 6, 8, 5, 7, 2, 5, 0, 6, 8, 4, 8, 1, 8, 1, 1, 2, 7, 0, 7, 0, 7, 6, 1, 6, 1, 7, 7, 9
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

See A245198.

Examples

			1.0809601238456275151880801506365456492375770747255234380135664425927599...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[4, 1], 10, 105] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(4,1) = 4*(2/3)^(1/4)/5^(3/4) = (512/375)^(1/4).

A245295 Decimal expansion of the Landau-Kolmogorov constant C(4,3) for derivatives in the case L_infinity(infinity, infinity).

Original entry on oeis.org

1, 4, 8, 0, 1, 6, 5, 6, 0, 8, 9, 8, 4, 5, 7, 0, 5, 0, 1, 1, 3, 3, 5, 7, 9, 9, 3, 2, 3, 2, 7, 6, 7, 3, 6, 3, 8, 5, 9, 8, 1, 2, 3, 5, 8, 2, 6, 1, 2, 3, 7, 6, 2, 3, 6, 6, 4, 9, 7, 2, 4, 8, 1, 1, 8, 3, 1, 4, 9, 3, 3, 7, 3, 1, 5, 9, 9, 2, 3, 0, 5, 2, 4, 0, 8, 8, 8, 3, 9, 0, 3, 8, 0, 3, 7, 6, 7, 9, 7, 3, 4, 5, 1, 4, 9
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

See A245198.

Examples

			1.480165608984570501133579932327673638598123582612376236649724811831493373...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[4, 3], 10, 105] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(4,3) = (3/5)^(1/4)*2^(3/4) = (24/5)^(1/4).
Showing 1-10 of 15 results. Next