A002425
Denominator of Pi^(2n)/(Gamma(2n)*(1-2^(-2n))*zeta(2n)).
Original entry on oeis.org
1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 968383680827, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961
Offset: 1
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
- Konrad Knopp, Theory and application of infinite series, Divergent series, Dover, p. 479
- L. Oettinger, Archiv. Math. Phys., 26 (1856), see esp. p. 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..300
- H. Cohn, Some elementary aspects of modular functions in several variables, Bull. Am. Math. Soc., Sept. 1965, 681ff, esp. p. 688.
- Ren Guan, K_0 groups of noncommutative R^2n, arXiv:2208.06253 [math.RA], 2022. See p. 22.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017.
-
[Denominator(4*n/((4^n-1)*Bernoulli(2*n))): n in [1..20]]; // G. C. Greubel, Jul 03 2019
-
A002425 := n -> (-1)^n*euler(2*n-1,0)*2^padic[ordp](2*n,2); # Peter Luschny, Nov 26 2010
A002425_list := proc(n) 1/(1+1/exp(z)); series(%,z,2*n+4);
seq(numer((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end;
A002425_list(17); # Peter Luschny, Jul 12 2012
-
a[n_]:= (-1)^(n-1) * Numerator[EulerE[2n-1, 1]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 20 2011, after N. J. A. Sloane's comment *)
a[n_]:= If[n<1, 0, With[{m = 2n-1}, Numerator[ m! SeriesCoefficient[ Tan[x/2], {x, 0, m}]]]] (* Michael Somos, Sep 14 2013 *)
Table[2*(4^n-1)*Zeta[1-2n] // Abs // Numerator, {n, 1, 20}] (* Jean-François Alcover, Oct 16 2013 *)
-
for(n=1,20,print1(abs(numerator(2*bernfrac(2*n)*(4^n-1)/(2*n))),","))
-
a(n)=if(n<1,0,(-1)^n/n*(1-4^n)*bernfrac(2*n)*2^valuation(2*n,2))
-
a(n)=(-1)^n*4*bitand(n,-n)*polylog(1-2*n,-1); \\ Peter Luschny, Nov 22 2012
-
def A002425_list(n):
T = [0]*n; T[0] = 1; S = [0]*n; k2 = 0
for k in (1..n-1): T[k] = k*T[k-1]
for k in (1..n):
if is_odd(k): S[k-1] = 4*k2; k2 += 1
else: S[k-1] = S[k2-1]+2*k2-1
for j in (k..n-1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
return [T[j]>>S[j] for j in (0..n-1)]
A002425_list(20) # Peter Luschny, Nov 17 2012
-
[denominator(4*n/((4^n-1)*bernoulli(2*n))) for n in (1..20)] # G. C. Greubel, Jul 03 2019
The n=15 term was formerly incorrectly given as 86125672563301143.
A198631
Numerators of the rational sequence with e.g.f. 1/(1+exp(-x)).
Original entry on oeis.org
1, 1, 0, -1, 0, 1, 0, -17, 0, 31, 0, -691, 0, 5461, 0, -929569, 0, 3202291, 0, -221930581, 0, 4722116521, 0, -968383680827, 0, 14717667114151, 0, -2093660879252671, 0, 86125672563201181, 0, -129848163681107301953, 0, 868320396104950823611, 0
Offset: 0
The rational sequence r(n) = a(n) / A006519(n+1) starts:
1, 1/2, 0, -1/4, 0, 1/2, 0, -17/8, 0, 31/2, 0, -691/4, 0, 5461/2, 0, -929569/16, 0, 3202291/2, 0, -221930581/4, 0, 4722116521/2, 0, -968383680827/8, 0, 14717667114151/2, 0, -2093660879252671/4, ...
-
seq(denom(euler(i,x))*euler(i,1),i=0..33); # Peter Luschny, Jun 16 2012
-
Join[{1},Table[Numerator[EulerE[n,1]/(2^n-1)], {n, 34}]] (* Peter Luschny, Jul 14 2013 *)
-
def A198631_list(n):
x = var('x')
s = (1/(1+exp(-x))).series(x,n+2)
return [(factorial(i)*s.coefficient(x,i)).numerator() for i in (0..n)]
A198631_list(34) # Peter Luschny, Jul 12 2012
-
# Alternatively:
def A198631_list(len):
e, f, R, C = 2, 1, [], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = -C[k-1] / (k+1)
C[0] = -sum(C[k] for k in (1..n))
R.append(numerator((e-1)*f*C[0]))
f *= n; e <<= 1
return R
print(A198631_list(36)) # Peter Luschny, Feb 21 2016
New name, a simpler standalone definition by
Peter Luschny, Jul 13 2012
A050970
Numerator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} (4k+1)^(-n).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 61, 17, 277, 31, 50521, 691, 540553, 5461, 199360981, 929569, 3878302429, 3202291, 2404879675441, 221930581, 14814847529501, 4722116521, 69348874393137901, 56963745931, 238685140977801337, 14717667114151
Offset: 1
The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001.
- N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
- Z. K. Silagadze, Comment on the sums S(n) = sum(k=-inf..inf) 1/(4k+1)^n, (2012) arXiv:1207.2055
- Eric Weisstein's World of Mathematics, Favard Constants
-
S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n * n!):
A050970 := n -> numer(EZ(n-1)): seq(A050970(n), n=1..26); # Peter Luschny, Aug 02 2017
# alternative
A050970 := proc(n)
if type(n,'even') then
(-1)^(n/2)*2^(n-2)/(n-1)!*euler(n-1,0) ;
else
(-1)^((n-1)/2)*2^(n-2)/(n-1)!*euler(n-1,1/2) ;
end if;
%/2^n ;
numer(%) ;
end proc:
seq(A050970(n),n=1..20) ; # R. J. Mathar, Jun 26 2024
-
s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := Numerator[FullSimplify[s[n]/Pi^n]]; a[1] = 1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 25 2012 *)
s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Numerator, {n, 1, 26}] (* Jean-François Alcover, May 13 2013 *)
a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Numerator; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Jun 20 2014 *)
Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
-
{a(n) = if( n<0, 0, numerator( polcoeff( 1 / (1 - tan(x/4 + x * O(x^n))), n)))}; /* Michael Somos, Nov 11 2014 */
A276592
Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
Original entry on oeis.org
1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 56963745931, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 14129659550745551130667441, 16103843159579478297227731
Offset: 1
-
seq(numer(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
-
a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
A279109
Denominators of coefficients in expansion of 1/(1 + cos(sqrt(x))).
Original entry on oeis.org
2, 8, 48, 5760, 80640, 14515200, 958003200, 1394852659200, 41845579776000, 25609494822912000, 4865804016353280000, 528941518954168320000, 1240896803466478878720000, 1613165844506422542336000000, 609776689223427721003008000000
Offset: 0
1/2 + (1/8)x + (1/48)x^2 + (17/5760)x^3 + ... ; 1/2, 1/8, 1/48, 17/5760, 31/80640, ... = |A089171|/A279109.
-
z = 26; t = CoefficientList[Series[1/(1 + Cos[Sqrt[x]]), {x, 0, z}], x];
u = Numerator[t] (* A089171, unsigned *)
Denominator[t] (* A279109 *)
A279370
Numerators of coefficients in expansion of (cos(sqrt(x)))/(1 + cos(sqrt(x))).
Original entry on oeis.org
1, -1, -1, -17, -31, -691, -5461, -929569, -3202291, -221930581, -4722116521, -56963745931, -14717667114151, -2093660879252671, -86125672563201181, -129848163681107301953, -868320396104950823611, -209390615747646519456961, -14129659550745551130667441
Offset: 0
(1/2) - (1/8)x - (1/48)x^2 - (17/5760)x^3 + ... ; 1/2, - 1/8, - 48/2, - 17/5760, ... = A279370/A279109.
-
z = 26; t = CoefficientList[Series[Cos[Sqrt[x]]/(1 + Cos[Sqrt[x]]), {x, 0, z}], x];
Numerator[t] (* A279370 *)
Denominator[t] (* A279109 *)
A237717
Numerators corresponding to A237425(n).
Original entry on oeis.org
2, 1, 1, -1, -1, 1, 1, -17, -1, 31, 5, -691, -691, 5461, 7, -929569, -3617, 3202291, 43867, -221930581, -174611, 4722116521, 854513, -968383680827, -236364091, 14717667114151, 8553103, -2093660879252671, -23749461029, 86125672563201181
Offset: 0
-
b[0] = 2; b[1] = 1; b[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 55}]
A279110
Denominators of coefficients in expansion of 2/(1 + cos(sqrt(x))).
Original entry on oeis.org
1, 4, 24, 2880, 40320, 7257600, 479001600, 697426329600, 20922789888000, 12804747411456000, 2432902008176640000, 264470759477084160000, 620448401733239439360000, 806582922253211271168000000, 304888344611713860501504000000, 4244045756995056938180935680000000
Offset: 0
1/1 + (1/4)x + (1/24)x^2 + (17/2880)x^3 + ... ; 1/1, 1/4, 1/24, 17/2880, 31/40320, ... = |A089171|/A279110.
-
z = 26; t = CoefficientList[Series[2/(1 + Cos[Sqrt[x]]), {x, 0, z}], x];
Numerator[t] (* A089171, unsigned *)
Denominator[t] (* A279110 *)
A013518
Numerator of [x^(2n+1)] in the Taylor expansion arcsin(cosec(x)-cot(x)) = x/2 + x^3/16 + 3*x^5/256 + 83*x^7/30720 + 8887*x^9/12386304 + ...
Original entry on oeis.org
1, 1, 3, 83, 8887, 57539, 2419601, 298733192941, 84896691713, 54207578317691, 535009143553922969, 303988210353762448529, 39439620915967757710853, 18146112662693896499335287481
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
-
Numerator[Take[CoefficientList[Series[ArcSin[Csc[x]-Cot[x]],{x,0,30}], x],{2,-1,2}]] (* Harvey P. Dale, Feb 02 2012 *)
-
a(n):=(sum((binomial(2*k,k)*sum(binomial(j+2*k,2*k)*(j+2*k+1)!*2^(-4*k-j-1)*(-1)^(n+k+j)*stirling2(2*n+1,j+2*k+1),j,0,2*n-2*k))/(2*k+1),k,0,n))/(2*n+1)!; /* Vladimir Kruchinin, May 31 2013 */
A130653
Odd terms in A002430 = numerators in Taylor series for tan(x).
Original entry on oeis.org
1, 1, 17, 929569, 129848163681107301953, 7724760729208487305545342963324697288405380586579904269441, 357302767470032900576643605538835088084055212588960920085261795996340330997333306469144562500392344758421560010463942134842407723273904635849262137252097
Offset: 1
tan(x) = x + 2 x^3/3! + 16 x^5/5! + 272 x^7/7! + ... = 1*x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^10).
A002430(n) begins {1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, ...}.
Thus a(1) = 1, a(2) = 1, a(3) = 17, a(4) = 929569, a(5) = 129848163681107301953.
- Eric Weisstein's World of Mathematics, Tangent.
Showing 1-10 of 10 results.
Comments