cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002425 Denominator of Pi^(2n)/(Gamma(2n)*(1-2^(-2n))*zeta(2n)).

Original entry on oeis.org

1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 968383680827, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961
Offset: 1

Views

Author

Keywords

Comments

Differs from the absolute values of A275994 the first time at index 60.
Consider the C(k)-summation process for divergent series: the series Sum((-1)^n*(n+1)^k) == 1 - 2^k + 3^k - 4^k + ..., summable C(1) to the value 1/2 for k = 0, is for each k >= 1 exactly summable C(k+1) to the sum s(k+1) = (2^(k+1)-1)*B(k+1)/ (k+1) and so a(n) = abs(numerator(s(2n))). - Benoit Cloitre, Apr 27 2002
Odd part of tangent numbers A000182 (even part is 2^A101921(n)). - Ralf Stephan, Dec 21 2004
(-1)^n*a(n+1) is the numerator of Euler(2n+1,1). - N. J. A. Sloane, Nov 10 2009 (a misprint corrected by Vladimir Shevelev, Sep 18 2017)
a(n) is the absolute value of the constant term of the Euler polynomial E_{2n-1} times the even part of 2n. - Peter Luschny, Nov 26 2010
From Vladimir Shevelev, Aug 31 2017: (Start)
Let E_m(x) = x^m + Sum_{odd k=1..m} e_k(m)*x^(m-k) be the Euler polynomial, let 2*n-1 <= m. Show that the expression c(m,n) = |e_(2*n-1)(m)|/binomial(m,2*n-1) does not depend on m and c(m,n) = a(n)/A006519(2*n). Indeed, by the formula in the Shevelev link |e_(2*n-1)(m)| = binomial(m,2*n-1)*(4^n-1)*B_(2*n)/n. On the other hand, by Cloitre's formula, we have a(n) = (4^n-1)*|B_(2*n)|*2^A001511(n) /n. Taking into account that 2^A001511 = A006519(2*n) we obtain the claimed equality. Since sign(e_k(n)) = (-1)^((k+1)/2), we have the following application of the sequence: e_k(n) = (-1)^((k+1)/2))*a((k+1)/2)*binomial(n,k)/A006519(k+1). (End)

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • Konrad Knopp, Theory and application of infinite series, Divergent series, Dover, p. 479
  • L. Oettinger, Archiv. Math. Phys., 26 (1856), see esp. p. 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Numerator given by A037239.
Different from A089171, A275994.

Programs

  • Magma
    [Denominator(4*n/((4^n-1)*Bernoulli(2*n))): n in [1..20]]; // G. C. Greubel, Jul 03 2019
  • Maple
    A002425 := n -> (-1)^n*euler(2*n-1,0)*2^padic[ordp](2*n,2); # Peter Luschny, Nov 26 2010
    A002425_list := proc(n) 1/(1+1/exp(z)); series(%,z,2*n+4);
    seq(numer((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end;
    A002425_list(17); # Peter Luschny, Jul 12 2012
  • Mathematica
    a[n_]:= (-1)^(n-1) * Numerator[EulerE[2n-1, 1]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 20 2011, after N. J. A. Sloane's comment *)
    a[n_]:= If[n<1, 0, With[{m = 2n-1}, Numerator[ m! SeriesCoefficient[ Tan[x/2], {x, 0, m}]]]] (* Michael Somos, Sep 14 2013 *)
    Table[2*(4^n-1)*Zeta[1-2n] // Abs // Numerator, {n, 1, 20}] (* Jean-François Alcover, Oct 16 2013 *)
  • PARI
    for(n=1,20,print1(abs(numerator(2*bernfrac(2*n)*(4^n-1)/(2*n))),","))
    
  • PARI
    a(n)=if(n<1,0,(-1)^n/n*(1-4^n)*bernfrac(2*n)*2^valuation(2*n,2))
    
  • PARI
    a(n)=(-1)^n*4*bitand(n,-n)*polylog(1-2*n,-1); \\ Peter Luschny, Nov 22 2012
    
  • Sage
    def A002425_list(n):
        T = [0]*n; T[0] = 1; S = [0]*n; k2 = 0
        for k in (1..n-1): T[k] = k*T[k-1]
        for k in (1..n):
            if is_odd(k): S[k-1] = 4*k2; k2 += 1
            else: S[k-1] = S[k2-1]+2*k2-1
            for j in (k..n-1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
        return [T[j]>>S[j] for j in (0..n-1)]
    A002425_list(20)  # Peter Luschny, Nov 17 2012
    
  • Sage
    [denominator(4*n/((4^n-1)*bernoulli(2*n))) for n in (1..20)] # G. C. Greubel, Jul 03 2019
    

Formula

a(n) = (-1)^n/n*(1 - 4^n)*B(2*n)*2^A001511(n) where B(k) denotes the k-th Bernoulli number. - Benoit Cloitre, Dec 30 2003
This is different from the sequence of numerators of the expansion of cosec(x) - cot(x) - see A089171.
From Johannes W. Meijer, May 24 2009: (Start)
a(n) = denominator(4*n/((2^(2*n)-1)*bernoulli(2*n))).
Equals A160469(n)/A048896(n-1).
Equals A089171(n)*A089170(n-1). (End)
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1+1/exp(x)))). - Peter Luschny, Jul 12 2012
a(n) = numerator(abs(2*(4^n-1)*zeta(1-2*n))). - Jean-François Alcover, Oct 16 2013
For every positive integers n,k we have a(n) = (-1)^(n+k)*N(2*n-1,k) + 2*(-1)^(n-1)*A006519(2*n)*(1^(2*n-1)-2^(2*n-1)+..+(-1)^k*(k-1)^(2*n-1)), where N(n,k) is the numerator of Euler(n,k). So, the right hand side is an invariant of k. - Vladimir Shevelev, Sep 19 2017
a(n) = numerator(r(n)) where r(n) = (-1)^binomial(2*n, 2)*Sum_{k=1..2*n}(-1)^k*Stirling2(2*n, k)*2^(-k)*(k-1)!. - Peter Luschny, May 24 2020
a(n) = 2*(-1)^n*A335956(2*n)*zeta(1-2*n). - Peter Luschny, Aug 30 2020

Extensions

The n=15 term was formerly incorrectly given as 86125672563301143.
Formula and cross-references edited by Johannes W. Meijer, May 21 2009

A198631 Numerators of the rational sequence with e.g.f. 1/(1+exp(-x)).

Original entry on oeis.org

1, 1, 0, -1, 0, 1, 0, -17, 0, 31, 0, -691, 0, 5461, 0, -929569, 0, 3202291, 0, -221930581, 0, 4722116521, 0, -968383680827, 0, 14717667114151, 0, -2093660879252671, 0, 86125672563201181, 0, -129848163681107301953, 0, 868320396104950823611, 0
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2011

Keywords

Comments

Numerators of the row sums of the Euler triangle A060096/A060097.
The corresponding denominator sequence looks like 2*A006519(n+1) when n is odd.
Also numerator of the value at the origin of the n-th derivative of the standard logistic function. - Enrique Pérez Herrero, Feb 15 2016

Examples

			The rational sequence r(n) = a(n) / A006519(n+1) starts:
1, 1/2, 0, -1/4, 0, 1/2, 0, -17/8, 0, 31/2, 0, -691/4, 0, 5461/2, 0, -929569/16, 0, 3202291/2, 0, -221930581/4, 0, 4722116521/2, 0, -968383680827/8, 0, 14717667114151/2, 0, -2093660879252671/4, ...
		

Crossrefs

Programs

  • Maple
    seq(denom(euler(i,x))*euler(i,1),i=0..33); # Peter Luschny, Jun 16 2012
  • Mathematica
    Join[{1},Table[Numerator[EulerE[n,1]/(2^n-1)], {n, 34}]] (* Peter Luschny, Jul 14 2013 *)
  • Sage
    def A198631_list(n):
        x = var('x')
        s = (1/(1+exp(-x))).series(x,n+2)
        return [(factorial(i)*s.coefficient(x,i)).numerator() for i in (0..n)]
    A198631_list(34) # Peter Luschny, Jul 12 2012
    
  • Sage
    # Alternatively:
    def A198631_list(len):
        e, f, R, C = 2, 1, [], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (k+1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append(numerator((e-1)*f*C[0]))
            f *= n; e <<= 1
        return R
    print(A198631_list(36)) # Peter Luschny, Feb 21 2016

Formula

a(n) = numerator(sum(E(n,m),m=0..n)), n>=0, with the Euler triangle E(n,m)=A060096(n,m)/A060097(n,m).
E.g.f.: 2/(1+exp(-x)) (see a comment in A060096).
r(n) := sum(E(n,m),m=0..n) = ((-1)^n)*sum(((-1)^m)*m!*S2(n,m)/2^m, m=0..n), n>=0, where S2 are the Stirling numbers of the second kind A048993. From the e.g.f. with y=exp(-x), dx=-y*dy, putting y=1 at the end. - Wolfdieter Lang, Nov 03 2011
a(n) = numerator(euler(n,1)/(2^n-1)) for n > 0. - Peter Luschny, Jul 14 2013
a(n) = numerator(2*(2^n-1)*B(n,1)/n) for n > 0, B(n,x) the Bernoulli polynomials. - Peter Luschny, May 24 2014
Numerators of the Taylor series coefficients 4*(2^(n+1)-1)*B(n+1)/(n+1) for n>0 of 1 + 2 * tanh(x/2) (cf. A000182 and A089171). - Tom Copeland, Oct 19 2016
a(n) = -2*zeta(-n)*A335956(n+1). - Peter Luschny, Jul 21 2020
Conjecture: r(n) = Sum_{k=0..n} A001147(k) * A039755(n, k) * (-1)^k / (k+1) where r(n) = a(n) / A006519(n+1) = (n!) * ([x^n] (2 / (1 + exp(-x)))), for n >= 0. - Werner Schulte, Feb 16 2024

Extensions

New name, a simpler standalone definition by Peter Luschny, Jul 13 2012
Second comment corrected by Robert Israel, Feb 21 2016

A050970 Numerator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} (4k+1)^(-n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 61, 17, 277, 31, 50521, 691, 540553, 5461, 199360981, 929569, 3878302429, 3202291, 2404879675441, 221930581, 14814847529501, 4722116521, 69348874393137901, 56963745931, 238685140977801337, 14717667114151
Offset: 1

Views

Author

Keywords

Comments

Reduced numerators of Favard constants.

Examples

			The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
		

Crossrefs

Denominators: A068205. See also A050971.

Programs

  • Maple
    S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
    S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n * n!):
    A050970 := n -> numer(EZ(n-1)): seq(A050970(n), n=1..26); # Peter Luschny, Aug 02 2017
    # alternative
    A050970 := proc(n)
        if type(n,'even') then
            (-1)^(n/2)*2^(n-2)/(n-1)!*euler(n-1,0) ;
        else
            (-1)^((n-1)/2)*2^(n-2)/(n-1)!*euler(n-1,1/2) ;
        end if;
        %/2^n ;
        numer(%) ;
    end proc:
    seq(A050970(n),n=1..20) ; # R. J. Mathar, Jun 26 2024
  • Mathematica
    s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := Numerator[FullSimplify[s[n]/Pi^n]]; a[1] = 1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 25 2012 *)
    s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Numerator, {n, 1, 26}] (* Jean-François Alcover, May 13 2013 *)
    a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Numerator; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Jun 20 2014 *)
    Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
    Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( 1 / (1 - tan(x/4 + x * O(x^n))), n)))}; /* Michael Somos, Nov 11 2014 */

Formula

There is a simple formula in terms of Euler and Bernoulli numbers.
a(2n) = A046976(n), a(2n+1) = A089171(n+1) (conjectured).
Numerator of coefficients of expansion of (sec(x/2) + tan(x/2) + 1)/2 in powers of x. - Sergei N. Gladkovskii, Nov 11 2014

Extensions

Entry revised by N. J. A. Sloane, Mar 24 2002

A276592 Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).

Original entry on oeis.org

1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 56963745931, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 14129659550745551130667441, 16103843159579478297227731
Offset: 1

Views

Author

Martin Renner, Sep 07 2016

Keywords

Comments

Apart from signs, same as A089171 and A279370. - Peter Bala, Feb 07 2019

Crossrefs

Programs

  • Maple
    seq(numer(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
  • Mathematica
    a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]]  (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
    a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)

Formula

a(n)/A276593(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
a(n)/A276593(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - Seiichi Manyama, Sep 03 2018

A279109 Denominators of coefficients in expansion of 1/(1 + cos(sqrt(x))).

Original entry on oeis.org

2, 8, 48, 5760, 80640, 14515200, 958003200, 1394852659200, 41845579776000, 25609494822912000, 4865804016353280000, 528941518954168320000, 1240896803466478878720000, 1613165844506422542336000000, 609776689223427721003008000000
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2016

Keywords

Comments

The numerators are the absolute values of the numbers at A089171.

Examples

			1/2 + (1/8)x + (1/48)x^2 + (17/5760)x^3 + ... ; 1/2, 1/8, 1/48, 17/5760, 31/80640, ... = |A089171|/A279109.
		

Crossrefs

Programs

  • Mathematica
    z = 26; t = CoefficientList[Series[1/(1 + Cos[Sqrt[x]]), {x, 0, z}], x];
    u = Numerator[t] (* A089171, unsigned *)
    Denominator[t]   (* A279109 *)

Formula

(1/2)*A279110.

A279370 Numerators of coefficients in expansion of (cos(sqrt(x)))/(1 + cos(sqrt(x))).

Original entry on oeis.org

1, -1, -1, -17, -31, -691, -5461, -929569, -3202291, -221930581, -4722116521, -56963745931, -14717667114151, -2093660879252671, -86125672563201181, -129848163681107301953, -868320396104950823611, -209390615747646519456961, -14129659550745551130667441
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2016

Keywords

Comments

Differs from A089171 in signs; see Formula.

Examples

			(1/2) - (1/8)x - (1/48)x^2 - (17/5760)x^3 + ... ; 1/2, - 1/8, - 48/2, - 17/5760, ... = A279370/A279109.
		

Crossrefs

Programs

  • Mathematica
    z = 26; t = CoefficientList[Series[Cos[Sqrt[x]]/(1 + Cos[Sqrt[x]]), {x, 0, z}], x];
    Numerator[t]   (* A279370 *)
    Denominator[t] (* A279109 *)

Formula

For odd n and for n = 0, we have a(n) = A089171(n); for positive even n, however, a(n) = -A089171(n)

A237717 Numerators corresponding to A237425(n).

Original entry on oeis.org

2, 1, 1, -1, -1, 1, 1, -17, -1, 31, 5, -691, -691, 5461, 7, -929569, -3617, 3202291, 43867, -221930581, -174611, 4722116521, 854513, -968383680827, -236364091, 14717667114151, 8553103, -2093660879252671, -23749461029, 86125672563201181
Offset: 0

Views

Author

Keywords

Comments

This autosequence (a sequence which has its inverse binomial transform equal to the signed sequence) is related to Bernoulli and Euler numbers. For more details, see A237425.

Crossrefs

Programs

  • Mathematica
    b[0] = 2; b[1] = 1; b[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 55}]

Formula

a(2n+2) = A000367(n+1), a(2n+1) = A089171(n).

A279110 Denominators of coefficients in expansion of 2/(1 + cos(sqrt(x))).

Original entry on oeis.org

1, 4, 24, 2880, 40320, 7257600, 479001600, 697426329600, 20922789888000, 12804747411456000, 2432902008176640000, 264470759477084160000, 620448401733239439360000, 806582922253211271168000000, 304888344611713860501504000000, 4244045756995056938180935680000000
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2016

Keywords

Examples

			1/1 + (1/4)x + (1/24)x^2 + (17/2880)x^3 + ... ; 1/1, 1/4, 1/24, 17/2880, 31/40320, ... = |A089171|/A279110.
		

Crossrefs

Programs

  • Mathematica
    z = 26; t = CoefficientList[Series[2/(1 + Cos[Sqrt[x]]), {x, 0, z}], x];
    Numerator[t]   (* A089171, unsigned *)
    Denominator[t] (* A279110 *)

Formula

A013518 Numerator of [x^(2n+1)] in the Taylor expansion arcsin(cosec(x)-cot(x)) = x/2 + x^3/16 + 3*x^5/256 + 83*x^7/30720 + 8887*x^9/12386304 + ...

Original entry on oeis.org

1, 1, 3, 83, 8887, 57539, 2419601, 298733192941, 84896691713, 54207578317691, 535009143553922969, 303988210353762448529, 39439620915967757710853, 18146112662693896499335287481
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

The e.g.f. of x/2, arcsin(cosec(x)-cot(x)) = x/(2^1*1!) + 3*x^3/(2^3*3!) + 45*x^5/(2^5*5!) +1743*x^7(/2^7*7!) + 133305*x^9/(2^9*9!) + ..., is apparently covered by A012780.

Crossrefs

Cf. A089171.

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[ArcSin[Csc[x]-Cot[x]],{x,0,30}], x],{2,-1,2}]] (* Harvey P. Dale, Feb 02 2012 *)
  • Maxima
    a(n):=(sum((binomial(2*k,k)*sum(binomial(j+2*k,2*k)*(j+2*k+1)!*2^(-4*k-j-1)*(-1)^(n+k+j)*stirling2(2*n+1,j+2*k+1),j,0,2*n-2*k))/(2*k+1),k,0,n))/(2*n+1)!; /* Vladimir Kruchinin, May 31 2013 */

Formula

a(n)=(sum(k=0..n, (binomial(2*k,k)*sum(j=0..2*n-2*k, binomial(j+2*k,2*k)*(j+2*k+1)!*2^(-4*k-j-1)*(-1)^(n+k+j)*stirling2(2*n+1,j+2*k+1)))/(2*k+1)))/(2*n+1)!. - Vladimir Kruchinin, May 31 2013

Extensions

Name edited by R. J. Mathar, Dec 19 2011

A130653 Odd terms in A002430 = numerators in Taylor series for tan(x).

Original entry on oeis.org

1, 1, 17, 929569, 129848163681107301953, 7724760729208487305545342963324697288405380586579904269441, 357302767470032900576643605538835088084055212588960920085261795996340330997333306469144562500392344758421560010463942134842407723273904635849262137252097
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

Odd terms in A002430(n) correspond to the indices that are the powers of 2.

Examples

			tan(x) = x + 2 x^3/3! + 16 x^5/5! + 272 x^7/7! + ... = 1*x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^10).
A002430(n) begins {1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, ...}.
Thus a(1) = 1, a(2) = 1, a(3) = 17, a(4) = 929569, a(5) = 129848163681107301953.
		

Crossrefs

Cf. A002430 = Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x). Cf. A001469, A002425, A046990, A089171, A110501, A036968.

Programs

  • Mathematica
    Table[ Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ], {n,1,8} ]

Formula

a(n) = Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ]. a(n) = A002430(2^(n-1)).
Showing 1-10 of 10 results.