cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050970 Numerator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} (4k+1)^(-n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 61, 17, 277, 31, 50521, 691, 540553, 5461, 199360981, 929569, 3878302429, 3202291, 2404879675441, 221930581, 14814847529501, 4722116521, 69348874393137901, 56963745931, 238685140977801337, 14717667114151
Offset: 1

Views

Author

Keywords

Comments

Reduced numerators of Favard constants.

Examples

			The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
		

Crossrefs

Denominators: A068205. See also A050971.

Programs

  • Maple
    S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
    S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n * n!):
    A050970 := n -> numer(EZ(n-1)): seq(A050970(n), n=1..26); # Peter Luschny, Aug 02 2017
    # alternative
    A050970 := proc(n)
        if type(n,'even') then
            (-1)^(n/2)*2^(n-2)/(n-1)!*euler(n-1,0) ;
        else
            (-1)^((n-1)/2)*2^(n-2)/(n-1)!*euler(n-1,1/2) ;
        end if;
        %/2^n ;
        numer(%) ;
    end proc:
    seq(A050970(n),n=1..20) ; # R. J. Mathar, Jun 26 2024
  • Mathematica
    s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := Numerator[FullSimplify[s[n]/Pi^n]]; a[1] = 1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 25 2012 *)
    s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Numerator, {n, 1, 26}] (* Jean-François Alcover, May 13 2013 *)
    a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Numerator; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Jun 20 2014 *)
    Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
    Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Numerator (* Eric W. Weisstein, Aug 02 2017 *)
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( 1 / (1 - tan(x/4 + x * O(x^n))), n)))}; /* Michael Somos, Nov 11 2014 */

Formula

There is a simple formula in terms of Euler and Bernoulli numbers.
a(2n) = A046976(n), a(2n+1) = A089171(n+1) (conjectured).
Numerator of coefficients of expansion of (sec(x/2) + tan(x/2) + 1)/2 in powers of x. - Sergei N. Gladkovskii, Nov 11 2014

Extensions

Entry revised by N. J. A. Sloane, Mar 24 2002

A046983 Denominators of Taylor series for tan(x + Pi/4).

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 45, 315, 63, 2835, 14175, 155925, 93555, 6081075, 42567525, 638512875, 127702575, 10854718875, 97692469875, 1856156927625, 371231385525, 194896477400625, 2143861251406875, 2900518163668125, 2275791174570375
Offset: 0

Views

Author

Keywords

Examples

			1 + 2*x + 2*x^2 + (8/3)*x^3 + (10/3)*x^4 + (64/15)*x^5 + (244/45)*x^6 + ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Cf. A046982.

Programs

  • Maple
    A046983 := proc(n)
        coeftayl(tan(x+Pi/4),x=0,n) ;
        denom(%) ;
    end proc: # R. J. Mathar, Jan 22 2017
  • Mathematica
    nmax = 24; t[0, 1] = 1; t[0, ] = 0; t[n, k_] := t[n, k] = (k-1)*t[n-1, k-1] + (k+1)*t[n-1, k+1]; Denominator[ Table[ Sum[ t[n, k]/n!, {k, 0, n+1}], {n, 0, nmax} ]] (* Jean-François Alcover, Nov 09 2011 *)
    CoefficientList[Series[Tan[x+Pi/4],{x,0,30}],x]//Denominator (* Harvey P. Dale, Sep 05 2023 *)

A360945 a(n) = numerator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.

Original entry on oeis.org

1, 2, 10, 244, 554, 202084, 2162212, 1594887848, 7756604858, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 105453443486621462355224, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 0

Views

Author

Artur Jasinski, Feb 26 2023

Keywords

Comments

The function (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) is rational for every positive integer n.
For denominators see A360966.
(Zeta(2*n+1,1/4) + Zeta(2*n+1,3/4))/Zeta(2*n+1) = 4*16^n - 2*4^n; see A193475.
For numerators of the function (Zeta(2*n,1/4) + Zeta(2*n,3/4))/Pi^(2*n) see A361007.
For denominators of the function (Zeta(2*n,1/4) + Zeta(2*n,3/4))/Pi^(2*n) see A036279.
(Zeta(2*n,1/4) - Zeta(2*n,3/4))/beta(2*n) = 16^n (see A001025) where beta is the Dirichlet beta function.
From the above formulas we can express Zeta(k,1/4) and Zeta(k,3/4) for every positive integer k.

Examples

			a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 244 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
		

Crossrefs

Programs

  • Mathematica
    Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 1, 25}] // FunctionExpand // Numerator (* Vaclav Kotesovec, Feb 27 2023 *)
    t[0, 1] = 1; t[0, _] = 0;
    t[n_, k_] := t[n, k] = (k-1) t[n-1, k-1] + (k+1) t[n-1, k+1];
    a[n_] := Sum[t[2n, k]/(2n)!, {k, 0, 2n+1}] // Numerator;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 15 2023 *)
    a[n_] := SeriesCoefficient[Tan[x+Pi/4], {x, 0, 2n}] // Numerator;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 15 2023 *)
  • PARI
    a(n) = numerator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023

Formula

a(n) = A046982(2*n).
(Zeta(2*n + 1, 1/4) - Zeta(2*n + 1, 3/4))/(Pi^(2*n + 1)) = A000364(n)*(2*n + 1)*2^(2*n)/(2*n + 1)!.

A360966 a(n) = denominator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.

Original entry on oeis.org

1, 1, 3, 45, 63, 14175, 93555, 42567525, 127702575, 97692469875, 371231385525, 2143861251406875, 2275791174570375, 48076088562799171875, 95646113035463615625, 3952575621190533915703125, 1441527579493018251609375, 68739242628124575327993046875, 333120945043988326589504765625
Offset: 0

Views

Author

Artur Jasinski, Apr 09 2023

Keywords

Comments

The function (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) is rational for every positive integer n.
For numerators see A360945.

Examples

			a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 45 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
		

Crossrefs

Programs

  • Mathematica
    Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 0, 25}] // FunctionExpand // Denominator
    (* Second program: *)
    a[n_] := SeriesCoefficient[Tan[x + Pi/4], {x, 0, 2n}] // Denominator;
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023 *)
  • PARI
    a(n) = denominator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023

Formula

a(n) = A046983(2*n).
(Zeta(2*n + 1, 1/4) - Zeta(2*n + 1, 3/4))/(Pi^(2*n + 1)) = A000364(n)*(2*n + 1)*2^(2*n)/(2*n + 1)!.

A361007 a(n) = numerator of (zeta(2*n,1/4) + zeta(2*n,3/4))/Pi^(2*n) where zeta is the Hurwitz zeta function.

Original entry on oeis.org

0, 2, 8, 64, 2176, 31744, 2830336, 178946048, 30460116992, 839461371904, 232711080902656, 39611984424992768, 955693069653508096, 1975371841521663868928, 1124025625663103358205952, 369906947004953565463576576, 278846808228005417477465964544
Offset: 0

Views

Author

Artur Jasinski, Mar 15 2023

Keywords

Comments

The function (zeta(2*n,1/4) + zeta(2*n,3/4))/Pi^(2*n) is rational for every positive integer n.

Examples

			tan(2*x) = 2*x + (8/3)*x^3 + (64/15)*x^5 + (2176/315)*x^7 + (31744/2835)*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[(Zeta[2*n, 1/4] + Zeta[2*n, 3/4])/Pi^(2*n), {n, 0, 25}] //
      FunctionExpand // Numerator
    Table[4^(2 k) (2^(2 k) - 1) (-1)^(k + 1) BernoulliB[2 k]/(2 (2 k)!), {k, 0, 25}] // Numerator
  • PARI
    my(x='x+O('x^50), v = Vec(tan(2*x)/x)); apply(numerator, vector(#v\2, k, v[2*k-1])) \\ Michel Marcus, Apr 09 2023

Formula

a(n) = numerator( [x^(2*n-1)] tan(2*x) ).
a(n) = numerator( (-1)^(n + 1)*4^(2*n)*(2^(2*n) - 1)*B(2*n)/(2*(2*n)!) ) where B(2*n) are Bernoulli numbers.
Showing 1-5 of 5 results.