A360945 a(n) = numerator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.
1, 2, 10, 244, 554, 202084, 2162212, 1594887848, 7756604858, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 105453443486621462355224, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 0
Examples
a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1. a(3) = 244 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
Crossrefs
Programs
-
Mathematica
Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 1, 25}] // FunctionExpand // Numerator (* Vaclav Kotesovec, Feb 27 2023 *) t[0, 1] = 1; t[0, _] = 0; t[n_, k_] := t[n, k] = (k-1) t[n-1, k-1] + (k+1) t[n-1, k+1]; a[n_] := Sum[t[2n, k]/(2n)!, {k, 0, 2n+1}] // Numerator; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 15 2023 *) a[n_] := SeriesCoefficient[Tan[x+Pi/4], {x, 0, 2n}] // Numerator; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 15 2023 *)
-
PARI
a(n) = numerator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023
Comments