cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A092505 a(n) = A002430(n) / A046990(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4
Offset: 1

Views

Author

Ralf Stephan, Apr 05 2004

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((-1)^(n - 1)*2^(2*n)*(2^(2*n) - 1)*Bernoulli(2*n) / Factorial(2*n)) / (Numerator(((-4)^n-(-16)^n) * Bernoulli(2*n) / 2 / n / Factorial(2*n))): n in [1..100]]; // Vincenzo Librandi, Jan 13 2019
  • PARI
    a(n)=if(n<1,0,numerator(polcoeff(Ser(tan(x)),2*n-1))/numerator(polcoeff(Ser(log(1/cos(x))),2*n)))
    
  • PARI
    \\ Quite wasteful, especially as there is the same bernfrac(2*n) in both. Should reduce to a much simpler form?
    A002430(n) = numerator(((-1)^(n-1)) * 2^(2*n) * (2^(2*n)-1)*bernfrac(2*n)/((2*n)!)); \\ After Johannes W. Meijer's May 24 2009 formula in A002430.
    A046990(n) = numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!); \\ From A046990
    A092505(n) = (A002430(n) / A046990(n)); \\ Antti Karttunen, Jan 12 2019
    

Formula

A007814(a(n)) = A130654(n). - Antti Karttunen, Jan 12 2019

A130654 Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007, Jun 23 2007

Keywords

Comments

Conjecture: A092505(n) is always a power of 2. a(n) = Log[ 2, A092505(n) ]. Note that a(n) = 0 iff n is a power of 2; or A002430(2^n) = A046990(2^n) and A092505(2^n) = 1. It appears that a(2k+1) = 1 for k>0. Note that least index k such that a(k) = n is {1, 3, 14, 60, ...} which apparently coincides with A006502(n) = {1, 3, 14, 60, 279, 1251, ...} Related to Fibonacci numbers (see Carlitz reference).
Least index k such that a(k) = n is listed in A131262(n) = {1, 3, 14, 60, 248, ...}. Conjecture: A131262(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n). If this conjecture is true then a(1008) = 5 and a(n)<5 for all n<1008.
Positions of records indeed continue as 1, 3, 14, 60, 248, 1008, 4064, 16320, ..., strongly suggesting union of {1} and A171499. - Antti Karttunen, Jan 13 2019

Examples

			A092505(n) begins {1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 1, ...}.
Thus a(1) = Log[2,1] = 0, a(2) = Log[2,1] = 0, a(3) = Log[2,2] = 1.
		

Crossrefs

Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A006502 = Related to Fibonacci numbers.
Cf. A131262 = Least index k such that A130654(k) = n. Cf. A062354 = Sigma(n)*EulerPhi(n).
Cf. also A171499.

Programs

  • Mathematica
    a=Series[ Tan[x], {x,0,256} ]; b=Series[ Log[ 1/Cos[x] ], {x,0,256}]; Table[ Log[ 2, Numerator[ SeriesCoefficient[ a, 2n-1 ] ] / Numerator[ SeriesCoefficient[ b, 2n ] ] ], {n,1,128} ]

Formula

a(n) = Log[ 2, A092505(n) ]. a(n) = Log[ 2, A002430(n) / A046990(n) ] = A007814(A092505(n)).

A002430 Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).

Original entry on oeis.org

1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, 1736640792209901647222, 418781231495293038913922
Offset: 1

Views

Author

Keywords

Comments

a(n) appears to be a multiple of A046990(n) (checked up to n=250). - Ralf Stephan, Mar 30 2004
The Taylor series for tan(x) appears to be identical to the sequence of quotients A160469(n)/A156769(n). - Johannes W. Meijer, May 24 2009

Examples

			tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... =
  x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + ... =
  Sum_{n >= 1} (2^(2n) - 1) * (2x)^(2n-1) * |bernoulli_2n| / (n*(2n-1)!).
tanh(x) = x - (1/3)*x^3 + (2/15)*x^5 - (17/315)*x^7 + (62/2835)*x^9 - (1382/155925)*x^11 + ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74.
  • H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 329.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A036279 (denominators), A000182, A099612, A160469, A156769.

Programs

  • Magma
    [Numerator( (-1)^(n-1)*4^n*(4^n-1)*Bernoulli(2*n)/Factorial(2*n) ): n in [1..20]]; // G. C. Greubel, Jul 03 2019
    
  • Maple
    R := n -> (-1)^floor(n/2)*(4^n-2^n)*Zeta(1-n)/(n-1)!:
    seq(numer(R(2*n)), n=1..20); # Peter Luschny, Aug 25 2015
  • Mathematica
    a[n_]:= (-1)^Floor[n/2]*(4^n - 2^n)*Zeta[1-n]/(n-1)!; Table[Numerator@ a[2n], {n, 20}] (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    a(n) = numerator( (-1)^(n-1)*4^n*(4^n-1)*bernfrac(2*n)/(2*n)! ); \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [numerator( (-1)^(n-1)*4^n*(4^n-1)*bernoulli(2*n)/factorial(2*n)  ) for n in (1..20)] # G. C. Greubel, Jul 03 2019

Formula

a(n) is the numerator of (-1)^(n-1)*2^(2*n)*(2^(2*n) -1)* Bernoulli(2*n)/(2*n)!. - Johannes W. Meijer, May 24 2009
Let R(x) = (cos(x*Pi/2) + sin(x*Pi/2))*(4^x - 2^x)*Zeta(1-x)/(x-1)!. Then a(n) = numerator(R(2*n)) and A036279(n) = denominator(R(2*n)). - Peter Luschny, Aug 25 2015

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003

A089171 Numerators of series coefficients of 1/(1 + cosh(sqrt(x))).

Original entry on oeis.org

1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -56963745931, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441
Offset: 0

Views

Author

Wouter Meeussen, Dec 07 2003

Keywords

Comments

Unsigned version is equal to A002425 up to n=11, but differs beyond that point.
Unsigned version: numerators of series coefficients of 1/(1 + cos(sqrt(x))); see Mathematica. - Clark Kimberling, Dec 06 2016

Crossrefs

Programs

  • Maple
    with(numtheory): c := n->(2^(2*n)-1)*bernoulli(2*n)/(2*n)!; seq(numer(c(n)),n=1..20); # C. Ronaldo
  • Mathematica
    Numerator[CoefficientList[Series[1/(1+Cosh[Sqrt[x]]), {x, 0, 24}], x]]
    Numerator[CoefficientList[Series[1/(1+Cos[Sqrt[x]]), {x, 0, 30}], x]]
    (* unsigned version, Clark Kimberling, Dec 06 2016 *)

Formula

a(n) = numerator(c(n+1)) where c(n)=(2^(2*n)-1)*B(2*n)/(2*n)!, B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Numerators of expansion of cosec(x)-cot(x) = 1/2*x+1/4*x^3/3!+1/2*x^5/5!+17/8*x^7/7!+31/2*x^9/9!+... - Ralf Stephan, Dec 21 2004 (Comment was applied to wrong entry, corrected by Alessandro Musesti (musesti(AT)gmail.com), Nov 02 2007)
E.g.f.: 1/sin(x)-cot(x). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: x/G(0); G(k) = 4*k+2-x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: (1+x/(x-2*Q(0)))/2; Q(k) = 8*k+2+x/(1+(2*k+1)*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: x/(x+Q(0)); Q(k) = x+(x^2)/((4*k+1)*(4*k+2)-(4*k+1)*(4*k+2)/(1+(4*k+3)*(4*k+4)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: T(0)/2, where T(k) = 1 - x^2/(x^2 - (4*k+2)*(4*k+6)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2013
Aerated, these are the numerators of the Taylor series coefficients of 2 * tanh(x/2) (cf. A000182 and A198631). - Tom Copeland, Oct 19 2016

A118817 Decimal expansion of Product_{n >= 1} cos(1/n).

Original entry on oeis.org

3, 8, 8, 5, 3, 6, 1, 5, 3, 3, 3, 5, 1, 7, 5, 8, 5, 9, 1, 8, 4, 3, 2, 9, 5, 7, 5, 6, 8, 7, 0, 3, 5, 9, 0, 5, 0, 1, 3, 9, 0, 0, 5, 2, 8, 5, 9, 7, 5, 1, 7, 9, 2, 1, 9, 1, 3, 1, 8, 4, 6, 1, 1, 9, 9, 8, 7, 9, 8, 7, 4, 9, 4, 3, 4, 6, 3, 3, 9, 3, 2, 7, 6, 8, 3, 8, 8, 4, 3, 1, 9, 7, 8, 1, 3, 8, 3, 4, 0, 8, 2, 2, 4, 1, 3
Offset: 0

Views

Author

Fredrik Johansson, May 23 2006

Keywords

Examples

			0.38853615333517585918432957568703590501390...
		

Crossrefs

Programs

  • Maple
    nn:= 120:
    p:= product(cos(1/n), n=1..infinity):
    f:= evalf(p, nn+10):
    s:= convert(f, string):
    seq(parse(s[n+1]), n=1..nn);  # Alois P. Heinz, Nov 04 2013
  • Mathematica
    S = Series[Log[Cos[x]], {x, 0, 400}]; N[Exp[N[Sum[SeriesCoefficient[S, 2k] Zeta[2k], {k, 1, 200}], 70]], 50]
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(2^(2*n) - 1)*Zeta[2*n]^2/(n*Pi^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* Vaclav Kotesovec, Sep 20 2014 *)
  • PARI
    exp(-sumpos(n=1,-log(cos(1/n)))) \\ warning: requires 2.6.2 or greater; Charles R Greathouse IV, Nov 04 2013
    
  • PARI
    T(n)=((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!
    lm=lambertw(2*log(Pi/2)*10^default(realprecision))/2/log(Pi/2); exp(-sum(n=1,lm,T(n)*zeta(2*n))) \\ Charles R Greathouse IV, Nov 06 2013

Formula

Equals exp(Sum_{n>=1} -c(n)*zeta(2*n)), where c(n) = A046990(n)/A046991(n).
Equals exp(-Sum_{n>=1} (2^(2*n)-1) * Zeta(2*n)^2 / (n*Pi^(2*n)) ). - Vaclav Kotesovec, Sep 20 2014
Equals exp(Sum_{k>=1} (-1)^k*2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number. - Amiram Eldar, Jul 30 2023

Extensions

Corrected offset and extended by Robert G. Wilson v, Nov 03 2013

A046991 Denominators of Taylor series for log(1/cos(x)). Also from log(cos(x)).

Original entry on oeis.org

1, 2, 12, 45, 2520, 14175, 935550, 42567525, 10216206000, 97692469875, 18561569276250, 2143861251406875, 34806217964017500, 48076088562799171875, 9086380738369043484375, 3952575621190533915703125, 3920955016221009644377500000, 68739242628124575327993046875
Offset: 0

Views

Author

Keywords

Examples

			log(1/cos(x)) = 1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...
log(cos(x)) = -(1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...).
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:3 at page 301.

Crossrefs

Cf. A046990, B(2n) = A027641(2n) / A027642(2n).

Programs

  • Maple
    q:= proc(n) add((-1)^k*combinat[eulerian1](n-1,k), k=0..n-1) end: A046991:= n -> denom((-1)^(n-1)*q(2*n)/(2*n)!):
    seq(A046991(n),n=0..17);  # Peter Luschny, Nov 16 2012
  • Mathematica
    a[n_] := Denominator[((-4)^n-(-16)^n)*BernoulliB[2*n]/2/n/(2*n)!]; a[0] = 0; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 11 2014, after Charles R Greathouse IV *)
    Take[Denominator[CoefficientList[Series[Log[1/Cos[x]],{x,0,40}],x]],{1,-1,2}] (* Harvey P. Dale, Jan 18 2020 *)
  • PARI
    a(n)=denominator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!) \\ Charles R Greathouse IV, Nov 06 2013
  • Sage
    def A046991(n):
        def q(n):
            return add((-1)^k*A173018(n-1, k) for k in (0..n-1))
        return ((-1)^(n-1)*q(2*n)/factorial(2*n)).denom()
    [A046991(n) for n in (0..17)]  # Peter Luschny, Nov 16 2012
    

Formula

A046990(n)/a(n) = 2^(2n-1) *(2^(2n) -1) *abs(B(2n)) / ((2n)! *n).
Let q(n) = Sum_{k=0..n-1} (-1)^k*A201637(n-1,k) then a(n) = denominator((-1)^(n-1)*q(2*n)/(2*n)!). - Peter Luschny, Nov 16 2012

A131262 a(n) = least index k such that A130654(k) = n.

Original entry on oeis.org

1, 3, 14, 60, 248, 1008
Offset: 0

Views

Author

Alexander Adamchuk, Jun 24 2007

Keywords

Comments

Also a(n) = least index k such that A092505(k) = A002430(k) / A046990(k) = 2^n.
Note that
a(0) = 1 = 1 - 0 = 2^0 - 0;
a(1) = 3 = 4 - 1 = 2^2 - 1;
a(2) = 14 = 16 - 2 = 2^4 - 2;
a(3) = 60 = 64 - 4 = 2^6 - 4;
a(4) = 248 = 256 - 8 = 2^8 - 8.
Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).
If this conjecture is true the next term would be a(5) = 1008 = 1024 - 16 = 2^10 - 16.

Examples

			A130654(n) begins
{0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, ...}.
Thus a(0) = 1, a(1) = 3, a(2) = 14, a(3) = 60.
		

Crossrefs

Cf. A130654 = Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n). Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A062354 = Sigma(n)*EulerPhi(n).

Formula

Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).

Extensions

a(5) = 1008 from Alexander Adamchuk, May 02 2010

A181993 Denominator of (4^n*(4^n-1)/2)*B_{2n}/(2n)!, B_{n} Bernoulli number.

Original entry on oeis.org

1, 2, 6, 15, 630, 2835, 155925, 6081075, 1277025750, 10854718875, 1856156927625, 194896477400625, 2900518163668125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 245059688513813102773593750, 4043484860477916195764296875
Offset: 0

Views

Author

Peter Luschny, Apr 05 2012

Keywords

Comments

Numerator is (-1)^(n+1)*A046990(n).

Crossrefs

Cf. A046990.

Programs

  • Maple
    A181993 := n -> denom((4^n*(4^n-1)/2)*bernoulli(2*n)/(2*n)!);
    seq(A181993(i), i=0..18);
  • Mathematica
    a[n_] := Denominator[4^n (4^n-1)/2 BernoulliB[2n]/(2n)!];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 18 2019 *)
  • PARI
    a(n) = denominator((4^n*(4^n-1)/2)*bernfrac(2*n)/(2*n)!); \\ Michel Marcus, Jun 18 2019

Formula

a(n) = denominator of (1/Pi)*Integral(x>=0, (sin(x)/x)^(2*n)*sin(2*n*x)*tan(x)).

A130653 Odd terms in A002430 = numerators in Taylor series for tan(x).

Original entry on oeis.org

1, 1, 17, 929569, 129848163681107301953, 7724760729208487305545342963324697288405380586579904269441, 357302767470032900576643605538835088084055212588960920085261795996340330997333306469144562500392344758421560010463942134842407723273904635849262137252097
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

Odd terms in A002430(n) correspond to the indices that are the powers of 2.

Examples

			tan(x) = x + 2 x^3/3! + 16 x^5/5! + 272 x^7/7! + ... = 1*x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^10).
A002430(n) begins {1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, ...}.
Thus a(1) = 1, a(2) = 1, a(3) = 17, a(4) = 929569, a(5) = 129848163681107301953.
		

Crossrefs

Cf. A002430 = Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x). Cf. A001469, A002425, A046990, A089171, A110501, A036968.

Programs

  • Mathematica
    Table[ Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ], {n,1,8} ]

Formula

a(n) = Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ]. a(n) = A002430(2^(n-1)).
Showing 1-9 of 9 results.