cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131262 a(n) = least index k such that A130654(k) = n.

Original entry on oeis.org

1, 3, 14, 60, 248, 1008
Offset: 0

Views

Author

Alexander Adamchuk, Jun 24 2007

Keywords

Comments

Also a(n) = least index k such that A092505(k) = A002430(k) / A046990(k) = 2^n.
Note that
a(0) = 1 = 1 - 0 = 2^0 - 0;
a(1) = 3 = 4 - 1 = 2^2 - 1;
a(2) = 14 = 16 - 2 = 2^4 - 2;
a(3) = 60 = 64 - 4 = 2^6 - 4;
a(4) = 248 = 256 - 8 = 2^8 - 8.
Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).
If this conjecture is true the next term would be a(5) = 1008 = 1024 - 16 = 2^10 - 16.

Examples

			A130654(n) begins
{0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, ...}.
Thus a(0) = 1, a(1) = 3, a(2) = 14, a(3) = 60.
		

Crossrefs

Cf. A130654 = Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n). Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A062354 = Sigma(n)*EulerPhi(n).

Formula

Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).

Extensions

a(5) = 1008 from Alexander Adamchuk, May 02 2010

A092505 a(n) = A002430(n) / A046990(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4
Offset: 1

Views

Author

Ralf Stephan, Apr 05 2004

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((-1)^(n - 1)*2^(2*n)*(2^(2*n) - 1)*Bernoulli(2*n) / Factorial(2*n)) / (Numerator(((-4)^n-(-16)^n) * Bernoulli(2*n) / 2 / n / Factorial(2*n))): n in [1..100]]; // Vincenzo Librandi, Jan 13 2019
  • PARI
    a(n)=if(n<1,0,numerator(polcoeff(Ser(tan(x)),2*n-1))/numerator(polcoeff(Ser(log(1/cos(x))),2*n)))
    
  • PARI
    \\ Quite wasteful, especially as there is the same bernfrac(2*n) in both. Should reduce to a much simpler form?
    A002430(n) = numerator(((-1)^(n-1)) * 2^(2*n) * (2^(2*n)-1)*bernfrac(2*n)/((2*n)!)); \\ After Johannes W. Meijer's May 24 2009 formula in A002430.
    A046990(n) = numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!); \\ From A046990
    A092505(n) = (A002430(n) / A046990(n)); \\ Antti Karttunen, Jan 12 2019
    

Formula

A007814(a(n)) = A130654(n). - Antti Karttunen, Jan 12 2019
Showing 1-2 of 2 results.