A046984 Number of ways to tile a 4 X 3n rectangle with right trominoes.
1, 4, 18, 88, 468, 2672, 16072, 100064, 636368, 4097984, 26579488, 173093760, 1129796928, 7383588608, 48287978624, 315921649152, 2067346607360, 13530037877760, 88555066819072, 579620448450560, 3793872862974976, 24832858496561152, 162544900186359808
Offset: 0
References
- Suggested on p. 96 of 1994 edition of "Polyominoes" by Samuel W. Golomb.
Links
- R. J. Mathar, Fault-free tilings with dominoes or trominoes.
- Cristopher Moore, Preprint and figures
- Cristopher Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (10,-22,-4).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <-4|-22|10>>^n. <<1, 4, 18>>)[1, 1]: seq(a(n), n=0..22); # Alois P. Heinz, Feb 21 2022
-
Mathematica
CoefficientList[Series[(1-6x)/(1-10x+22x^2+4x^3),{x,0,40}],x] (* or *) LinearRecurrence[{10,-22,-4},{1,4,18},40] (* Harvey P. Dale, Mar 31 2012 *)
-
PARI
a(n)=([0,1,0; 0,0,1; -4,-22,10]^n*[1;4;18])[1,1] \\ Charles R Greathouse IV, Feb 10 2017
Formula
G.f.: (1 - 6*x)/(1 - 10*x + 22*x^2 + 4*x^3).
a(0)=1, a(1)=4, a(2)=18, a(n)=10*a(n-1)-22*a(n-2)-4*a(n-3). - Harvey P. Dale, Mar 31 2012
Comments