A046985 Multiply perfect numbers whose average divisor is an integer and divides the number itself.
1, 6, 672, 30240, 32760, 23569920, 45532800, 14182439040, 51001180160, 153003540480, 403031236608, 13661860101120, 154345556085770649600, 9186050031556349952000, 143573364313605309726720, 352338107624535891640320, 680489641226538823680000, 34384125938411324962897920
Offset: 1
Keywords
Examples
k = 45532800 is a term since, s0 = 384, s1 = 182131200, and the three quotients s1/k = 182131200/45532800 = 4, (k * s0)/s1 = (45532800 * 384)/182131200 = 96, and s1/s0 = 182131200/384 = 474300 are all integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..321
Programs
-
Mathematica
q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d]]; Select[Range[33000], q] (* Amiram Eldar, May 09 2024 *)
-
PARI
isok(n) = s1 = sigma(n); s0 = numdiv(n); !(s1 % n) && !(s1 % s0) && !((n*s0) % s1); \\ Michel Marcus, Dec 10 2013
-
PARI
is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d);} \\ Amiram Eldar, May 09 2024
Formula
Extensions
a(10)-a(15) from Donovan Johnson, Nov 30 2008
Edited and a(16)-a(18) added by Amiram Eldar, May 09 2024