cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046985 Multiply perfect numbers whose average divisor is an integer and divides the number itself.

Original entry on oeis.org

1, 6, 672, 30240, 32760, 23569920, 45532800, 14182439040, 51001180160, 153003540480, 403031236608, 13661860101120, 154345556085770649600, 9186050031556349952000, 143573364313605309726720, 352338107624535891640320, 680489641226538823680000, 34384125938411324962897920
Offset: 1

Views

Author

Keywords

Examples

			k = 45532800 is a term since, s0 = 384, s1 = 182131200, and the three quotients s1/k = 182131200/45532800 = 4, (k * s0)/s1 = (45532800 * 384)/182131200 = 96, and s1/s0 = 182131200/384 = 474300 are all integers.
		

Crossrefs

Intersection of A003601, A007691 and A001599.

Programs

  • Mathematica
    q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d]]; Select[Range[33000], q] (* Amiram Eldar, May 09 2024 *)
  • PARI
    isok(n) = s1 = sigma(n); s0 = numdiv(n); !(s1 % n) && !(s1 % s0) && !((n*s0) % s1); \\ Michel Marcus, Dec 10 2013
    
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d);} \\ Amiram Eldar, May 09 2024

Formula

Let s1 = sigma(k) = A000203(k) be the sum of divisors of k and s0 = d(k) = A000005(k) be the number of divisors of k. Then, k is a term if s1/k, (k * s0)/s1, and s1/s0 are all integers.

Extensions

a(10)-a(15) from Donovan Johnson, Nov 30 2008
Edited and a(16)-a(18) added by Amiram Eldar, May 09 2024