cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046994 Number of Greek-key tours on a 3 X n board; i.e., self-avoiding walks on a 3 X n grid starting in the top left corner.

Original entry on oeis.org

1, 3, 8, 17, 38, 78, 164, 332, 680, 1368, 2768, 5552, 11168, 22368, 44864, 89792, 179840, 359808, 720128, 1440512, 2882048, 5764608, 11531264, 23063552, 46131200, 92264448, 184537088, 369078272, 738172928, 1476354048, 2952740864, 5905498112, 11811061760, 23622156288
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)

Keywords

Examples

			On a 3 X 3 board labeled 123 456 789 (reading across rows), 125478963 is such a tour.
		

References

  • Posting by Thomas Womack (mert0236(AT)sable.ox.ac.uk) to sci.math newsgroup, Apr 21 1999.

Crossrefs

Row 3 of A378938.
Cf. A046995.

Programs

  • Maple
    A046994:=n->`if`(n=1,1,11*2^(n-3)-(4+(-1)^n)*(2^((1/4)*(2*n-7-(-1)^n)))): seq(A046994(n), n=1..30); # Wesley Ivan Hurt, Sep 14 2014
  • Mathematica
    CoefficientList[Series[(1 + x - x^3)/(1 - 2 x - 2 x^2 + 4 x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 14 2014 *)

Formula

a(1) = 1; a(2m) = Sum_{i = 2...2m-1} a(i) + 3*2^(m-1); a(2m+1) = Sum_{i = 2...2m} a(i) + 5*2^(m-1).
a(n) = 11*2^(n-3) - (4 + (-1)^n)*(2^((1/4)*(2n - 7 - (-1)^n))), n >= 2. - Nathaniel Johnston, Feb 03 2006
a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3) for n>4. G.f.: x*(1+x-x^3)/(1-2*x-2*x^2+4*x^3). - Colin Barker, Jul 19 2012

Extensions

More terms and formula from Hugo van der Sanden