A046996 Number of Baxter permutations: A001181/2.
1, 3, 11, 46, 211, 1037, 5377, 29101, 163120, 941480, 5570280, 33664996, 207249719, 1296670793, 8229378293, 52895993341, 343891293422, 2258771535962, 14974619271658, 100117092310368, 674548712552456, 4577138309318008, 31261253291922136, 214800030086785976
Offset: 2
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1120
Crossrefs
Cf. A359363.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, 2*n-3, ((7*n^2+7*n-2)*a(n-1)+8*(n-1)*(n-2)*a(n-2))/((n+2)*(n+3))) end: seq(a(n), n=2..25); # Alois P. Heinz, Jul 29 2022
-
Mathematica
Sum[Binomial[n+1, k-1] Binomial[n+1, k] Binomial[n+1, k+1], {k, 1, n}]/(2 Binomial[n+1, 1] Binomial[n+1, 2])
-
SageMath
def A046996(n): return PolyA359363(n, 1) // 2 print([A046996(n) for n in range(2, 26)]) # Peter Luschny, Jan 04 2024
Formula
a(n) = (1/2)*B(n, 1) where B(n, x) are the Baxter polynomials with coefficients A359363. - Peter Luschny, Jan 04 2024
Extensions
More terms from Olivier Gérard, Jun 26 2001