cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001181 Number of Baxter permutations of length n (also called Baxter numbers).

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560, 67329992, 414499438, 2593341586, 16458756586, 105791986682, 687782586844, 4517543071924, 29949238543316, 200234184620736, 1349097425104912, 9154276618636016, 62522506583844272
Offset: 0

Views

Author

Keywords

Comments

As shown by Dulucq and Guilbert (see for example "Baxter Permutations", Discrete Math., 1998), a(n) is also the number of possible paths for three vicious walkers of length n-1 (a.k.a. "vicious 3-watermelons") [Essam & Guttmann (1995), Eq. (63)] [Jensen (2017), Eqs. (1), (2)]. The proof follows easily by comparing Ollerton's recurrence here and the recurrence in Eq. (60) of Essam & Guttmann. In fact, as discussed by Dulucq and Guilbert, this interpretation of the sequence has been known for a long time. - N. J. A. Sloane, Mar 19 2021; additional references provided by Olivier Gerard, Mar 22 2021.
From Roger Ford, Apr 11 2020: (Start)
a(n) is also the number of meanders with n top arches that as the number of arches is reduced by combining the first and last arches every even number of arches produces a meander.
Example: For n = 4, this meander has this trait.
/\ arches= 8
/\ / \
/ \ --> /\ //\ \
Starting meander: /\ /\ / /\ \ Split and /\/\//\\ ///\\/\\
\ \/ \ \/ / / rotate
\ \ / / bottom arches /\
\ \/ / / \ arches= 7
\ / / /\\ /\
\ / Combine start //\//\\\ //\\/\
\ / first arch with
meander: \/ end of last arch
/\ /\
/\ / \ Combine arches /\ //\\ arches= 6
\ \ / /\ \ again then /\ //\\ ///\\\
\ \ \/ / / rotate and join
\ \ / / <-- /\
\ \/ / //\\ /\ arches= 5
\ / Combine ///\\\ //\\
\/ /\
meander: / \
/ /\ \ Combine /\
\/ \/ <-- //\\ /\/\ arches= 4
/\
Combine /\ //\\ arches= 3
meander: /\ Combine
\/ <-- /\ /\ arches= 2
(End)

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 22*x^4 + 92*x^5 + 422*x^6 + 2074*x^7 + ...
a(4) = 22 since all permutations of length 4 are Baxter except 2413 and 3142. - _Michael Somos_, Jul 19 2002
		

References

  • Arthur T. Benjamin and Naiomi T. Cameron, Counting on determinants, American Mathematical Monthly, 112.6 (2005): 481-492.
  • W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.
  • William M. Boyce, Commuting functions with no common fixed point, Transactions of the American Mathematical Society 137 (1969): 77-92.
  • T. Y. Chow, Review of "Bonichon, Nicolas; Bousquet-Mélou, Mireille; Fusy, Éric; Baxter permutations and plane bipolar orientations. Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.", MathSciNet Review MR2734180 (2011m:05023).
  • S. Dulucq and O. Guibert, Baxter permutations, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995).
  • J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), 1995, pp. 5849ff. See (60) and (63).
  • Iwan Jensen, Three friendly walkers, Journal of Physics A: Mathematical and Theoretical, Volume 50:2 (2017), #24003, 14 pages; https://doi.org/10.1088/1751-8121/50/2/024003. See (1), (2).
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399, Table A.7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.55.
  • Doron Zeilberger, The method of creative telescoping, J. Symb. Comput. 11.3 (1991): 195-204. See Section 7.8.

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 2*Sum([1..n], k-> Binomial(n+1,k-1)* Binomial(n+1,k)*Binomial(n+1, k+1) )/(n*(n+1)^2) )); # G. C. Greubel, Jul 24 2019
  • Haskell
    a001181 0 = 1
    a001181 n =
       (sum $ map (\k -> product $ map (a007318 (n+1)) [k-1..k+1]) [1..n])
        `div` (a006002 n)
    -- Reinhard Zumkeller, Oct 23 2011
    
  • Magma
    [1] cat [2*(&+[Binomial(n+1,k-1)*Binomial(n+1,k)* Binomial(n+1, k+1): k in [1..n]])/(n*(n+1)^2): n in [1..30]]; // G. C. Greubel, Jul 24 2019
    
  • Maple
    C := binomial; A001181 := proc(n) local k; add(C(n+1, k-1)*C(n+1, k)* C(n+1, k+1)/ (C(n+1, 1)*C(n+1, 2)), k = 1..n); end;
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 1,
          ((7*n^2+7*n-2)*a(n-1)+8*(n-1)*(n-2)*a(n-2))/((n+2)*(n+3)))
        end:
    seq(a(n), n=0..24);  # Alois P. Heinz, Jul 29 2022
  • Mathematica
    A001181[n_] := HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -1] (* Richard L. Ollerton, Sep 13 2006 *)
    a[0]=1; a[1]=1; a[n_] := a[n] = ((7n^2+7n-2)*a[n-1] + 8(n-1)(n-2)*a[n-2]) / ((n+2)(n+3)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 28 2015, from 3rd formula *)
  • PARI
    {a(n) = if( n<0, 0, sum( k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2))))}; /* Michael Somos, Jul 19 2002 */
    
  • Python
    from sympy import binomial as C
    def a(n): return sum([(C(n + 1, k - 1)*C(n + 1, k)*C(n + 1, k + 1))/(C(n + 1, 1) * C(n + 1, 2)) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
    
  • Sage
    [1]+[2*sum(binomial(n+1,k-1)*binomial(n+1,k)*binomial(n+1, k+1) for k in (1..n))/(n*(n+1)^2) for n in (1..30)] # G. C. Greubel, Jul 24 2019
    print([BaxterPermutations(n).cardinality() for n in range(25)])
    # Peter Luschny, May 21 2024
    

Formula

a(n) = Sum_{k=1..n} C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) / (C(n+1,1) * C(n+1,2)).
(n + 1)*(n + 2)*(n + 3)*(3*n - 2)*a(n) = 2*(n + 1)*(9*n^3 + 3*n^2 - 4*n + 4)*a(n - 1) + (3*n - 1)*(n - 2)*(15*n^2 - 5*n - 14)*a(n - 2) + 8*(3*n + 1)*(n - 2)^2*(n - 3)*a(n - 3), if n>1. [Stanley, 1999] - Michael Somos, Jul 19 2002
From Richard L. Ollerton, Sep 13 2006: (Start)
D-finite with recurrence (n + 2)*(n + 3)*a(n) = (7*n^2 + 7*n - 2)*a(n-1) + 8*(n - 1)*(n - 2)*a(n-2), a(0) = a(1) = 1.
a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -1). (End)
[The coefficients of the polynomials p(n, x) = hypergeom([-1-n, -n, 1-n], [2, 3], -x) are given by the triangular form of A056939. - Peter Luschny, Dec 28 2022]
G.f.: -1 + (1/(3*x^2)) * (x-1 + (1-2*x)*hypergeom([-2/3, 2/3],[1],27*x^2/(1-2*x)^3) - (8*x^3-11*x^2-x)*hypergeom([1/3, 2/3],[2],27*x^2/(1-2*x)^3)/(1-2*x)^2 ). - Mark van Hoeij, Oct 23 2011
a(n) ~ 2^(3*n+5)/(Pi*sqrt(3)*n^4). - Vaclav Kotesovec, Oct 01 2012
0 = +a(n)*(+a(n+1)*(+512*a(n+2) + 2624*a(n+3) - 960*a(n+4)) +a(n+2)*(-1216*a(n+2) + 3368*a(n+3) - 1560*a(n+4)) + a(n+3)*(+600*a(n+3) + 120*a(n+4))) + a(n+1)*(+a(n+1)*(-64*a(n+2) - 1288*a(n+3) + 600*a(n+4)) +a(n+2)*(-136*a(n+2) + 295*a(n+3) - 421*a(n+4)) +a(n+3)*(+161*a(n+3) + 41*a(n+4))) + a(n+2)*(+a(n+2)*(+72*a(n+2) + 17*a(n+3) - 19*a(n+4)) + a(n+3)*(-a(n+3) - a(n+4))) if n>=0. - Michael Somos, Mar 09 2017
G.f.: ((x^3+3*x^2+3*x+1)/(1-8*x)^(3/4)*hypergeom([1/4, 5/4],[2],64*x*(1+x)^3/(8*x-1)^3) - 1 + x)/(3*x^2). - Mark van Hoeij, Nov 05 2023

Extensions

Changed initial term to a(0) = 1 (it was a(0) = 0, but there were compelling reasons to change it). - N. J. A. Sloane, Sep 14 2021

A359363 Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 10, 10, 1, 0, 1, 20, 50, 20, 1, 0, 1, 35, 175, 175, 35, 1, 0, 1, 56, 490, 980, 490, 56, 1, 0, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 0, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0

Views

Author

Peter Luschny, Dec 28 2022

Keywords

Comments

This triangle is a member of a family of Pascal-like triangles. Let T(n, k, m) = sf(m)*F(n - 1) / (F(k - 1)*F(n - k)) if k > 0 and otherwise k^n, where F(n) = Product_{j=0..m} (n + j)! and sf(m) are the superfactorials A000178. The case m = 2 gives this triangle, some other cases are given in the crossreferences. See also A342889 for a related representation of generalized binomial coefficients.

Examples

			Triangle T(n, k) starts:
[0] 1
[1] 0, 1
[2] 0, 1,   1
[3] 0, 1,   4,    1
[4] 0, 1,  10,   10,     1
[5] 0, 1,  20,   50,    20,     1
[6] 0, 1,  35,  175,   175,    35,     1
[7] 0, 1,  56,  490,   980,   490,    56,    1
[8] 0, 1,  84, 1176,  4116,  4116,  1176,   84,   1
[9] 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1
.
Let p = (p1, p2,..., pn) denote a permutation of {1, 2,..., n}. The pair (p(i), p(i+1)) is a 'rise' if p(i) < p(i+1). Additionally a conventional rise is counted at the beginning of p.
T(n, k) is the number of Baxter permutations of {1,2,...,n} with k rises. For example for n = 4, [T(n, k) for k = 0..n] = [0, 1, 10, 10, 1]. The permutations, with preceding number of rises, are:
.
1 [4, 3, 2, 1],  3 [2, 3, 4, 1],  2 [3, 4, 2, 1],  3 [2, 3, 1, 4],
2 [3, 2, 4, 1],  3 [2, 1, 3, 4],  2 [3, 2, 1, 4],  3 [1, 3, 4, 2],
2 [2, 4, 3, 1],  3 [1, 3, 2, 4],  2 [4, 2, 3, 1],  3 [3, 4, 1, 2],
2 [2, 1, 4, 3],  3 [3, 1, 2, 4],  2 [4, 2, 1, 3],  3 [1, 2, 4, 3],
2 [1, 4, 3, 2],  3 [1, 4, 2, 3],  2 [4, 1, 3, 2],  3 [4, 1, 2, 3],
2 [4, 3, 1, 2],  4 [1, 2, 3, 4].
		

Crossrefs

Special cases of the general formula: A097805 (m = 0), (0,1)-Pascal triangle; A090181 (m = 1), triangle of Narayana; this triangle (m = 2); A056940 (m = 3), with 1,0,0...; A056941 (m = 4), with 1,0,0...; A142465 (m = 5), with 1,0,0....
Variant: A056939. Diagonals: A000292, A006542, A047819.

Programs

  • Maple
    p := (n, x) -> ifelse(n = 0, 1, x*hypergeom([-1-n, -n, 1-n], [2, 3], -x)):
    seq(seq(coeff(simplify(p(n, x)), x, k), k = 0..n), n = 0..10);
    # Alternative:
    T := proc(n, k) local F; F := n -> n!*(n+1)!*(n+2)!;
    ifelse(k = 0, k^n, 2*F(n-1)/(F(k-1)*F(n-k))) end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • PARI
    C=binomial;
    T(n, k) = if(n==0 && k==0, 1, ( C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) ) / ( C(n+1,1) * C(n+1,2) ) );
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());
    \\ Joerg Arndt, Jan 04 2024
    
  • Python
    from functools import cache
    from math import factorial
    @cache
    def A359363Row(n: int) -> list[int]:
        @cache
        def F(n: int): return factorial(n) ** 3 * ((n+1) * (n+1) * (n+2))
        if n == 0: return [1]
        return [0] + [(2*F(n-1))//(F(k-1) * F(n-k)) for k in range(1, n+1)]
    for n in range(0, 10): print(A359363Row(n))
    # Peter Luschny, Jan 04 2024
  • SageMath
    def A359363(n):
        if n == 0: return SR(1)
        h = x*hypergeometric([-1 - n, -n, 1 - n], [2, 3], -x)
        return h.series(x, n + 1).polynomial(SR)
    for n in range(10): print(A359363(n).list())
    def PolyA359363(n, t): return Integer(A359363(n)(x=t).n())
    # Peter Luschny, Jan 04 2024
    

Formula

T(n, k) = [x^k] p(n, x).
T(n, k) = 2*F(n-1)/(F(k-1)*F(n-k)) for k > 0 where F(n) = n!*(n+1)!*(n+2)!.
p(n, 1) = A001181(n), i.e. the Baxter numbers are the values of the Baxter polynomials at x = 1.
(-1)^(n + 1)*p(2*n + 1, -1) = A217800(n) .

A001183 Number of nontrivial Baxter permutations of length 2n-1.

Original entry on oeis.org

0, 2, 2, 18, 66, 374, 1694, 9822, 51698
Offset: 1

Views

Author

Keywords

References

  • W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Showing 1-3 of 3 results.