A046996
Number of Baxter permutations: A001181/2.
Original entry on oeis.org
1, 3, 11, 46, 211, 1037, 5377, 29101, 163120, 941480, 5570280, 33664996, 207249719, 1296670793, 8229378293, 52895993341, 343891293422, 2258771535962, 14974619271658, 100117092310368, 674548712552456, 4577138309318008, 31261253291922136, 214800030086785976
Offset: 2
-
a:= proc(n) option remember; `if`(n<4, 2*n-3,
((7*n^2+7*n-2)*a(n-1)+8*(n-1)*(n-2)*a(n-2))/((n+2)*(n+3)))
end:
seq(a(n), n=2..25); # Alois P. Heinz, Jul 29 2022
-
Sum[Binomial[n+1, k-1] Binomial[n+1, k] Binomial[n+1, k+1], {k, 1, n}]/(2 Binomial[n+1, 1] Binomial[n+1, 2])
-
def A046996(n): return PolyA359363(n, 1) // 2
print([A046996(n) for n in range(2, 26)]) # Peter Luschny, Jan 04 2024
A342282
G.f. = 1-1/H(x) where H(x) = 1 + 2*x + 6*x^2 + 22*x^3 + 92*x^4 + 422*x^5 + 2074*x^6 + ... is a g.f. for the Baxter sequence A001181 with a different offset.
Original entry on oeis.org
0, 2, 2, 6, 24, 110, 550, 2922, 16242, 93520, 553980, 3359384, 20777588, 130696662, 834244830, 5393850898, 35272830054, 233016356788, 1553427829684, 10441803227652, 70715551631992, 482201548554776, 3308810614160224, 22836540660981088, 158458108961055864, 1104984826809182592
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Essam, J.W. and Guttmann, A.J., 1995. Vicious walkers and directed polymer networks in general dimensions. Physical Review E, 52(6), pp. 5849ff.
- Iwan Jensen, Three friendly walkers, Journal of Physics A: Mathematical and Theoretical, Volume 50:2 (2017), #24003, 14 pages. See G(x).
A056939
Array read by antidiagonals: number of antichains (or order ideals) in the poset 3*m*n or plane partitions with rows <= m, columns <= n and entries <= 3.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 50, 20, 1, 1, 35, 175, 175, 35, 1, 1, 56, 490, 980, 490, 56, 1, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0
The initial rows of the array are:
1 1 1 1 1 1 ...
1 4 10 20 35 56 ...
1 10 50 175 490 1176 ...
1 20 175 980 4116 14112 ...
1 35 490 4116 24696 116424 ...
1 56 1176 14112 116424 731808 ...
...
Considered as a triangle, the initial rows are:
[1],
[1, 1],
[1, 4, 1],
[1, 10, 10, 1],
[1, 20, 50, 20, 1],
[1, 35, 175, 175, 35, 1],
[1, 56, 490, 980, 490, 56, 1],
[1, 84, 1176, 4116, 4116, 1176, 84, 1],
[1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1],
[1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1],
[1, 220, 9075, 108900, 457380, 731808, 457380, 108900, 9075, 220, 1]
...
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
- R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- Johann Cigler, Some observations about Hankel determinants of the columns of Pascal triangle and related topics, arXiv:2202.07298 [math.CO], 2022.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- P. A. MacMahon, Combinatory analysis, section 495, 1916.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1..12:
A007318 (Pascal),
A001263,
A056939,
A056940,
A056941,
A142465,
A142467,
A142468,
A174109,
A342889,
A342890,
A342891.
-
# To get initial terms of the array - N. J. A. Sloane, Apr 20 2021
bb := (k,l) -> binomial(k+l,k)*binomial(k+l+1,k)*binomial(k+l+2,k)*2/((k+1)^2*(k+2));
for k from 0 to 8 do
lprint([seq(bb(k,l),l=0..8)]);
od:
-
t[n_, m_] = 2*Binomial[n, m]*Binomial[n + 1, m + 1]* Binomial[n + 2, m + 2]/((n - m + 1)^2*(n - m + 2)); Flatten[Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]] (* Roger L. Bagula, Jan 28 2009 *)
-
\\ cf. A359363
C=binomial;
T(n,k)=if(n==0&&k==0,1,(C(n+1,k-1)*C(n+1,k)*C(n+1,k+1))/(C(n+1,1)*C(n+1,2)));
for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 04 2024
A237770
Number of standard Young tableaux with n cells without a succession v, v+1 in a row.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, 5583, 19683, 72162, 274796, 1082439, 4406706, 18484332, 79818616, 353995743, 1611041726, 7510754022, 35842380314, 174850257639, 871343536591, 4430997592209, 22978251206350, 121410382810005, 653225968918521
Offset: 0
The a(5) = 9 such tableaux of 5 are:
[1] [2] [3] [4] [5] [6] [7] [8] [9]
135 13 135 13 13 14 14 15 1
24 24 2 25 2 25 2 2 2
5 4 4 4 3 3 3 3
5 5 4 4
5
The corresponding ballot sequences are:
1: [ 0 1 0 1 0 ]
2: [ 0 1 0 1 2 ]
3: [ 0 1 0 2 0 ]
4: [ 0 1 0 2 1 ]
5: [ 0 1 0 2 3 ]
6: [ 0 1 2 0 1 ]
7: [ 0 1 2 0 3 ]
8: [ 0 1 2 3 0 ]
9: [ 0 1 2 3 4 ]
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..68 (terms 0..48 from Alois P. Heinz)
- Timothy Y. Chow, Henrik Eriksson and C. Kenneth Fan, Chess Tableaux, The Electronic Journal of Combinatorics, vol.11, no.2, (2005).
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
Cf.
A238126 (tableaux with one succession),
A238127 (two successions).
-
h:= proc(l, j) option remember; `if`(l=[], 1,
`if`(l[1]=0, h(subsop(1=[][], l), j-1), add(
`if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]),
h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l))))
end:
g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0),
`if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [i, l[]]))))
end:
a:= n-> g(n, n, []):
seq(a(n), n=0..30);
# second Maple program (counting ballot sequences):
b:= proc(n, v, l) option remember;
`if`(n<1, 1, add(`if`(i<>v and (i=1 or l[i-1]>l[i]),
b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+
b(n-1, nops(l)+1, [l[], 1]))
end:
a:= proc(n) option remember; forget(b); b(n-1, 1, [1]) end:
seq(a(n), n=0..30);
-
b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i != v && (i == 1 || l[[i-1]] > l[[i]]), b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; a[n_] := a[n] = b[n-1, 1, {1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from 2nd Maple program *)
A005362
Hoggatt sequence with parameter d=4.
Original entry on oeis.org
1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, 3966563630394, 42997859838010, 475191259977060, 5344193918791710, 61066078557804360, 707984385321707910, 8318207051955884772, 98936727936728464152
Offset: 0
- D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..845
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Nick Hobson, Python program for this sequence
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A056940:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..3]]) >;
A005362:= func< n | (&+[A056940(n,k): k in [0..n]]) >;
[A005362(n): n in [0..30]]; // G. C. Greubel, Nov 14 2022
-
a := n -> hypergeom([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
-
A005362[n_]:=HypergeometricPFQ[{-3-n,-2-n,-1-n,-n},{2,3,4},1] (* Richard L. Ollerton, Sep 12 2006 *)
-
def A005362(n): return simplify(hypergeometric([-3-n, -2-n, -1-n, -n],[2,3,4], 1))
[A005362(n) for n in range(41)] # G. C. Greubel, Nov 14 2022
A005363
Hoggatt sequence with parameter d=5.
Original entry on oeis.org
1, 2, 8, 44, 310, 2606, 25202, 272582, 3233738, 41454272, 567709144, 8230728508, 125413517530, 1996446632130, 33039704641922, 566087847780250, 10006446665899330, 181938461947322284, 3393890553702212368, 64807885247524512668, 1264344439859632559216
Offset: 0
- D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..681
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;
A005363:= func< n | (&+[A056941(n,k): k in [0..n]]) >;
[A005363(n): n in [0..40]]; // G. C. Greubel, Nov 14 2022
-
a := n -> hypergeom([-4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5], -1):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
# The following Maple program is based on Eq (60) of Essam-Guttmann (1995) and confirms that that sequence is the same as the present one. - N. J. A. Sloane, Mar 27 2021
v5 := proc(n) local t1,t2,t3,t4,t5;
if n=0 then 1
elif n=1 then 2
elif n=2 then 8
else
t1 := (4+n)*(5+n)^2*(6+n)*(7+n)*(8+n)*(252+253*n+55*n^2);
t2 := 3*(4+n)*(5+n)*(141120+362152*n + 373054*n^2+192647*n^3+52441*n^4 +7161*n^5 +385*n^6);
t3 := n*(1-n)*(5738880+14311976*n+14466242*n^2+7579175*n^3 +2170343*n^4+322289*n^5 + 19415*n^6);
t4 := 32*(2-n)*(1-n)^2*n^2*(1+n)*(560+363*n+55*n^2);
t5 := t2*v5(n-1)-t3*v5(n-2)+t4*v5(n-3);
t5/t1;
fi; end;
[seq(v5(n), n=0..20)];
-
A005363[n_]:=HypergeometricPFQ[{-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5},-1] (* Richard L. Ollerton, Sep 12 2006 *)
-
def A005363(n): return simplify(hypergeometric([-4-n, -3-n, -2-n, -1-n, -n],[2,3,4,5], -1))
[A005363(n) for n in range(51)] # G. C. Greubel, Nov 14 2022
A116925
Triangle read by rows: row n (n >= 0) consists of the elements g(i, n-i) (0 <= i <= n), where g(r,s) = 1 + Sum_{k=1..r} Product_{i=0..k-1} binomial(r+s-1, s+i) / binomial(r+s-1, i).
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 5, 8, 5, 1, 2, 6, 14, 16, 6, 1, 2, 7, 22, 42, 32, 7, 1, 2, 8, 32, 92, 132, 64, 8, 1, 2, 9, 44, 177, 422, 429, 128, 9, 1, 2, 10, 58, 310, 1122, 2074, 1430, 256, 10, 1, 2, 11, 74, 506, 2606, 7898, 10754, 4862, 512, 11, 1, 2, 12, 92, 782, 5462, 25202, 60398, 58202, 16796, 1024, 12
Offset: 0
The first few rows of the triangle are:
1
1 2
1 2 3
1 2 4 4
1 2 5 8 5
1 2 6 14 16 6
1 2 7 22 42 32 7
1 2 8 32 92 132 64 8
1 2 9 44 177 422 429 128 9
1 2 10 58 310 1122 2074 1430 256 10
...
-
g:=proc(n,p) local k,i; 1 + add( mul( binomial(n+p-1,p+i) / binomial(n+p-1,i), i=0..k-1 ), k=1..n); end; (N. J. A. Sloane, based on the formula from Hsueh-Hsing Hung)
f:=proc(n,r) local k,b,i; b:=binomial; add( mul( b(n+r-2,k-1+i),i=0..r-1)/ mul( b(n+r-2,i),i=1..r-1),k=1..n); end; M:=30; for j from 0 to M do lprint(seq(f(i,j+1-i),i=1..j+1)); od; # N. J. A. Sloane
-
rows = 11; t[n_, p_] := 1 + Sum[Product[ Binomial[ n+p-1, p+i] / Binomial[ n+p-1, i], {i, 0, k-1}], {k, 1, n}]; Flatten[ Table[ t[p, n-p], {n, 0, rows}, {p, 0, n}]](* Jean-François Alcover, Nov 18 2011, after Maple *)
One entry corrected by Hsueh-Hsing Hung (hhh(AT)mail.nhcue.edu.tw), Sep 06 2006
Simpler formula provided by Hsueh-Hsing Hung (hhh(AT)mail.nhcue.edu.tw), Sep 08 2006, which is now taken as the definition of this triangle
A005364
Hoggatt sequence with parameter d=6.
Original entry on oeis.org
1, 2, 9, 58, 506, 5462, 70226, 1038578, 17274974, 317292692, 6346909285, 136723993122, 3143278648954, 76547029418394, 1962350550273130, 52679691605422354, 1474290522744355250, 42847373913958703100, 1288899422418558314550, 40013380588722843337620
Offset: 0
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..573
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >;
A005364:= func< n | (&+[A142465(n,k): k in [0..n]]) >;
[A005364(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
-
A005364[n_]:=HypergeometricPFQ[{-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6},1] (* Richard L. Ollerton, Sep 13 2006 *)
-
a(n) = my(d=6); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
-
def A005364(n): return simplify(hypergeometric([-5-n, -4-n, -3-n, -2-n, -1-n, -n],[2, 3, 4, 5, 6], 1))
[A005364(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
A005365
Hoggatt sequence with parameter d=7.
Original entry on oeis.org
1, 2, 10, 74, 782, 10562, 175826, 3457742, 78408332, 2005691690, 56970282514, 1772967273794, 59814500606018, 2168062920325850, 83802728579860658, 3432438439271783026, 148165335791410936770, 6708873999658599592672
Offset: 0
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..496
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A142467:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]) >;
A005365:= func< n | (&+[A142467(n,k): k in [0..n]]) >;
[A005365(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
-
A005365[n_]:=HypergeometricPFQ[{-6-n,-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6,7},-1] (* Richard L. Ollerton, Sep 13 2006 *)
-
a(n) = my(d=7); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
-
def A005365(n): return simplify(hypergeometric([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5,6,7], -1))
[A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
A214021
Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 6, 6, 1, 1, 1, 0, 1, 22, 72, 18, 1, 1, 1, 0, 1, 92, 1289, 960, 57, 1, 1, 1, 0, 1, 422, 29889, 93964, 14257, 186, 1, 1, 1, 0, 1, 2074, 831174, 13652068, 8203915, 228738, 622, 1, 1
Offset: 0
A(2,4) = 1:
[1 3 5 7]
[2 4 6 8].
A(4,2) = 6:
[1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
[2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
[3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
[4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 22, 92, 422, ...
1, 1, 6, 72, 1289, 29889, 831174, ...
1, 1, 18, 960, 93964, 13652068, 2621897048, ...
1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
- Alois P. Heinz, Antidiagonals n = 0..23, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
Showing 1-10 of 44 results.
Comments