A142465
Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..5} binomial(n+i,m)/binomial(m+i,m).
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 28, 28, 1, 1, 84, 336, 84, 1, 1, 210, 2520, 2520, 210, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 924, 60984, 457380, 457380, 60984, 924, 1, 1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1, 1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 28, 28, 1;
1, 84, 336, 84, 1;
1, 210, 2520, 2520, 210, 1;
1, 462, 13860, 41580, 13860, 462, 1;
1, 924, 60984, 457380, 457380, 60984, 924, 1;
1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1;
1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1;
- Seiichi Manyama, Rows n = 0..139, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12:
A007318 (Pascal),
A001263,
A056939,
A056940,
A056941,
A142465,
A142467,
A142468,
A174109,
A342889,
A342890,
A342891.
-
A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >;
[A142465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
-
A142465 := proc(n,m)
mul(binomial(n+i,m)/binomial(m+i,m),i=0..5) ;
end proc; # R. J. Mathar, Mar 22 2013
-
T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,5}];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
T(n, k) = prod(j=0, 5, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
-
def A142465(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..5))
flatten([[A142465(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022
Edited by the Associate Editors of the OEIS, May 17 2009
A005362
Hoggatt sequence with parameter d=4.
Original entry on oeis.org
1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, 3966563630394, 42997859838010, 475191259977060, 5344193918791710, 61066078557804360, 707984385321707910, 8318207051955884772, 98936727936728464152
Offset: 0
- D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..845
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Nick Hobson, Python program for this sequence
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A056940:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..3]]) >;
A005362:= func< n | (&+[A056940(n,k): k in [0..n]]) >;
[A005362(n): n in [0..30]]; // G. C. Greubel, Nov 14 2022
-
a := n -> hypergeom([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
-
A005362[n_]:=HypergeometricPFQ[{-3-n,-2-n,-1-n,-n},{2,3,4},1] (* Richard L. Ollerton, Sep 12 2006 *)
-
def A005362(n): return simplify(hypergeometric([-3-n, -2-n, -1-n, -n],[2,3,4], 1))
[A005362(n) for n in range(41)] # G. C. Greubel, Nov 14 2022
A005363
Hoggatt sequence with parameter d=5.
Original entry on oeis.org
1, 2, 8, 44, 310, 2606, 25202, 272582, 3233738, 41454272, 567709144, 8230728508, 125413517530, 1996446632130, 33039704641922, 566087847780250, 10006446665899330, 181938461947322284, 3393890553702212368, 64807885247524512668, 1264344439859632559216
Offset: 0
- D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..681
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;
A005363:= func< n | (&+[A056941(n,k): k in [0..n]]) >;
[A005363(n): n in [0..40]]; // G. C. Greubel, Nov 14 2022
-
a := n -> hypergeom([-4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5], -1):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
# The following Maple program is based on Eq (60) of Essam-Guttmann (1995) and confirms that that sequence is the same as the present one. - N. J. A. Sloane, Mar 27 2021
v5 := proc(n) local t1,t2,t3,t4,t5;
if n=0 then 1
elif n=1 then 2
elif n=2 then 8
else
t1 := (4+n)*(5+n)^2*(6+n)*(7+n)*(8+n)*(252+253*n+55*n^2);
t2 := 3*(4+n)*(5+n)*(141120+362152*n + 373054*n^2+192647*n^3+52441*n^4 +7161*n^5 +385*n^6);
t3 := n*(1-n)*(5738880+14311976*n+14466242*n^2+7579175*n^3 +2170343*n^4+322289*n^5 + 19415*n^6);
t4 := 32*(2-n)*(1-n)^2*n^2*(1+n)*(560+363*n+55*n^2);
t5 := t2*v5(n-1)-t3*v5(n-2)+t4*v5(n-3);
t5/t1;
fi; end;
[seq(v5(n), n=0..20)];
-
A005363[n_]:=HypergeometricPFQ[{-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5},-1] (* Richard L. Ollerton, Sep 12 2006 *)
-
def A005363(n): return simplify(hypergeometric([-4-n, -3-n, -2-n, -1-n, -n],[2,3,4,5], -1))
[A005363(n) for n in range(51)] # G. C. Greubel, Nov 14 2022
A005365
Hoggatt sequence with parameter d=7.
Original entry on oeis.org
1, 2, 10, 74, 782, 10562, 175826, 3457742, 78408332, 2005691690, 56970282514, 1772967273794, 59814500606018, 2168062920325850, 83802728579860658, 3432438439271783026, 148165335791410936770, 6708873999658599592672
Offset: 0
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..496
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A142467:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]) >;
A005365:= func< n | (&+[A142467(n,k): k in [0..n]]) >;
[A005365(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
-
A005365[n_]:=HypergeometricPFQ[{-6-n,-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6,7},-1] (* Richard L. Ollerton, Sep 13 2006 *)
-
a(n) = my(d=7); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
-
def A005365(n): return simplify(hypergeometric([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5,6,7], -1))
[A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
A005366
Hoggatt sequence with parameter d=8.
Original entry on oeis.org
1, 2, 11, 92, 1157, 19142, 403691, 10312304, 311348897, 10826298914, 426196716090, 18700516849302, 903666922873158, 47592378143008974, 2708388575679431454, 165309083872549538190, 10753269337589887334670, 741379205762167719365268
Offset: 0
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..438
- J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
- D. C. Fielder, Letter to N. J. A. Sloane, Jun 1988
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Vaclav Kotesovec, Calculation of the asymptotic formula for the sequence A005366
-
A142468:= func< n,k | Binomial(n,k)*(&*[Binomial(n+2*j,k+j)/Binomial(n+2*j,j): j in [1..7]]) >;
A005366:= func< n | (&+[A142468(n,k): k in [0..n]]) >;
[A005366(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
-
A005366[n_]:=HypergeometricPFQ[{-7-n,-6-n,-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6,7,8},1] (* Richard L. Ollerton, Sep 13 2006 *)
-
a(n) = my(d=8); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
-
def A005365(n): return simplify(hypergeometric([-7-n, -6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n],[2, 3, 4, 5, 6, 7, 8], 1))
[A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
A342967
a(n) = 1 + Sum_{j=1..n} Product_{k=0..j-1} binomial(2*n-1,n+k) / binomial(2*n-1,k).
Original entry on oeis.org
1, 2, 5, 22, 177, 2606, 70226, 3457742, 311348897, 51177188350, 15377065068510, 8430169458379450, 8446194335222422950, 15435904380166258833482, 51546769958534244310727102, 313937270864810066000897492222, 3493348088919874482660174997662017
Offset: 0
-
a[n_] := 1 + Sum[Product[Binomial[2*n - 1, n + k]/Binomial[2*n - 1, k], {k, 0, j - 1}], {j, 1, n}]; Array[a, 17, 0] (* Amiram Eldar, Apr 01 2021 *)
Table[1 + BarnesG[2*n + 1] * Sum[BarnesG[j + 1]*BarnesG[n - j + 1] / (BarnesG[n + j + 1]*BarnesG[2*n - j + 1]), {j, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 02 2021 *)
-
a(n) = 1+sum(j=1, n, prod(k=0, j-1, binomial(2*n-1, n+k)/binomial(2*n-1, k)));
-
a(n) = sum(j=0, n, prod(k=0, n-1, binomial(n+k, j)/binomial(j+k, j)));
Showing 1-6 of 6 results.
Comments