cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A142467 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..6} binomial(n+i,m)/binomial(m+i,m).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 120, 540, 120, 1, 1, 330, 4950, 4950, 330, 1, 1, 792, 32670, 108900, 32670, 792, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 3432, 736164, 16195608, 44537922, 16195608, 736164, 3432, 1
Offset: 0

Views

Author

Roger L. Bagula, Sep 20 2008

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">7; cf. A342889. - _N. J. A. Sloane, Apr 03 2021

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     8,       1;
  1,    36,      36,         1;
  1,   120,     540,       120,         1;
  1,   330,    4950,      4950,       330,         1;
  1,   792,   32670,    108900,     32670,       792,         1;
  1,  1716,  169884,   1557270,   1557270,    169884,      1716,       1;
  1,  3432,  736164,  16195608,  44537922,  16195608,    736164,    3432,    1;
  1,  6435, 2760615, 131589315, 868489479, 868489479, 131589315, 2760615, 6435, 1;
		

Crossrefs

Cf. A001263, A005365 (row sums), A056939, A056940, A056941.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Magma
    [(&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
    
  • Mathematica
    T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,6}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Nov 13 2022 *)
  • PARI
    T(n, k) = prod(j=0, 6, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
    
  • SageMath
    def A142467(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..6))
    flatten([[A142467(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022

Formula

T(n,m) = A142465(n,m)*binomial(n+6,m)/binomial(m+6,m).
Sum_{k=0..n} T(n, k) = A005365(n).

Extensions

Edited by the Associate Editors of the OEIS, May 17 2009

A005362 Hoggatt sequence with parameter d=4.

Original entry on oeis.org

1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, 3966563630394, 42997859838010, 475191259977060, 5344193918791710, 61066078557804360, 707984385321707910, 8318207051955884772, 98936727936728464152
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(4) (of dimension 4) and let E be the exterior algebra of V (of dimension 16). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 18 2021
This is the number of 4-vicious walkers (aka vicious 4-watermelons) - see Essam and Guttmann (1995). This is the 4-walker analog of A001181. - N. J. A. Sloane, Mar 22 2021

References

  • D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A056940:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..3]]) >;
    A005362:= func< n | (&+[A056940(n,k): k in [0..n]]) >;
    [A005362(n): n in [0..30]]; // G. C. Greubel, Nov 14 2022
    
  • Maple
    a := n -> hypergeom([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
  • Mathematica
    A005362[n_]:=HypergeometricPFQ[{-3-n,-2-n,-1-n,-n},{2,3,4},1] (* Richard L. Ollerton, Sep 12 2006 *)
  • SageMath
    def A005362(n): return simplify(hypergeometric([-3-n, -2-n, -1-n, -n],[2,3,4], 1))
    [A005362(n) for n in range(41)] # G. C. Greubel, Nov 14 2022

Formula

From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric4F3([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1).
(n+3)*(n+4)*(n+5)*(n+6)*a(n) = 6*(n+1)*(n+3)*(n+4)*(2*n+5)*a(n-1) + 4*(n-1)*n*(4*n+7)*(4*n+9)*a(n-2); a(0)=1, a(1)=2. (End)
a(n) = S(4,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 3 * 2^(4*n + 29/2) / (Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Apr 01 2021

A005363 Hoggatt sequence with parameter d=5.

Original entry on oeis.org

1, 2, 8, 44, 310, 2606, 25202, 272582, 3233738, 41454272, 567709144, 8230728508, 125413517530, 1996446632130, 33039704641922, 566087847780250, 10006446665899330, 181938461947322284, 3393890553702212368, 64807885247524512668, 1264344439859632559216
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(5) (of dimension 5) and let E be the exterior algebra of V (of dimension 32). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 18 2021
This is the number of 5-vicious walkers (aka vicious 5-watermelons) - see Essam and Guttmann (1995). This is the 5-walker analog of A001181. - N. J. A. Sloane, Mar 27 2021

References

  • D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;
    A005363:= func< n | (&+[A056941(n,k): k in [0..n]]) >;
    [A005363(n): n in [0..40]]; // G. C. Greubel, Nov 14 2022
    
  • Maple
    a := n -> hypergeom([-4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5], -1):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
    # The following Maple program is based on Eq (60) of Essam-Guttmann (1995) and confirms that that sequence is the same as the present one. - N. J. A. Sloane, Mar 27 2021
    v5 := proc(n) local t1,t2,t3,t4,t5;
    if n=0 then 1
    elif n=1 then 2
    elif n=2 then 8
    else
    t1 := (4+n)*(5+n)^2*(6+n)*(7+n)*(8+n)*(252+253*n+55*n^2);
    t2 := 3*(4+n)*(5+n)*(141120+362152*n + 373054*n^2+192647*n^3+52441*n^4 +7161*n^5 +385*n^6);
    t3 := n*(1-n)*(5738880+14311976*n+14466242*n^2+7579175*n^3 +2170343*n^4+322289*n^5 + 19415*n^6);
    t4 := 32*(2-n)*(1-n)^2*n^2*(1+n)*(560+363*n+55*n^2);
    t5 := t2*v5(n-1)-t3*v5(n-2)+t4*v5(n-3);
    t5/t1;
    fi; end;
    [seq(v5(n), n=0..20)];
  • Mathematica
    A005363[n_]:=HypergeometricPFQ[{-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5},-1] (* Richard L. Ollerton, Sep 12 2006 *)
  • SageMath
    def A005363(n): return simplify(hypergeometric([-4-n, -3-n, -2-n, -1-n, -n],[2,3,4,5], -1))
    [A005363(n) for n in range(51)] # G. C. Greubel, Nov 14 2022

Formula

From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric5F4([-4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5], -1).
(n+4)*(n+5)^2*(n+6)*(n+7)*(n+8)*(252 +253*n +55*n^2)*a(n) = 3*(n+4)*(n+5)*(141120 + 362152*n + 373054*n^2 + 192647*n^3 + 52441*n^4 + 7161*n^5 + 385*n^6)*a(n-1) + n*(n-1)*(5738880 + 14311976*n + 14466242*n^2 + 7579175*n^3 + 2170343*n^4 + 322289*n^5 + 19415*n^6)*a(n-2) - 32*(n-1)^2*n^2*(n-2)*(n+1)*(560 + 363*n + 55*n^2)*a(n-3); a(-1)=a(0)=1, a(1)=2. (End)
a(n) = S(5,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 9 * 2^(5*n + 27) / (sqrt(5) * Pi^2 * n^12). - Vaclav Kotesovec, Apr 01 2021
a(n) = Sum_{k=0..n} A056941(n, k) (row sums of triangle A056941). - G. C. Greubel, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 29 2016

A005364 Hoggatt sequence with parameter d=6.

Original entry on oeis.org

1, 2, 9, 58, 506, 5462, 70226, 1038578, 17274974, 317292692, 6346909285, 136723993122, 3143278648954, 76547029418394, 1962350550273130, 52679691605422354, 1474290522744355250, 42847373913958703100, 1288899422418558314550, 40013380588722843337620
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(6) (of dimension 6) and let E be the exterior algebra of V (of dimension 64). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 03 2021
This is the number of 6-vicious walkers (aka vicious 6-watermelons) - see Essam and Guttmann (1995). This is the 6-walker analog of A001181. - N. J. A. Sloane, Mar 27 2021

References

  • D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >;
    A005364:= func< n | (&+[A142465(n,k): k in [0..n]]) >;
    [A005364(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
    
  • Mathematica
    A005364[n_]:=HypergeometricPFQ[{-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6},1] (* Richard L. Ollerton, Sep 13 2006 *)
  • PARI
    a(n) = my(d=6); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
    
  • SageMath
    def A005364(n): return simplify(hypergeometric([-5-n, -4-n, -3-n, -2-n, -1-n, -n],[2, 3, 4, 5, 6], 1))
    [A005364(n) for n in range(51)] # G. C. Greubel, Nov 13 2022

Formula

a(n) = Hypergeometric6F5([-5-n, -4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5, 6], 1). - Richard L. Ollerton, Sep 13 2006
a(n) = S(6,n) where S(d,n) = 1 + Sum_{h=0..n-1} Product_{k=0..h} binomial(n+d-1-k,d) / binomial(d + k, d) [From Fielder and Alford]. - Sean A. Irvine, May 29 2016
a(n) ~ 135 * 2^(6*n + 40) / (sqrt(3) * Pi^(5/2) * n^(35/2)). - Vaclav Kotesovec, Apr 01 2021

Extensions

More terms from Sean A. Irvine, May 29 2016

A005366 Hoggatt sequence with parameter d=8.

Original entry on oeis.org

1, 2, 11, 92, 1157, 19142, 403691, 10312304, 311348897, 10826298914, 426196716090, 18700516849302, 903666922873158, 47592378143008974, 2708388575679431454, 165309083872549538190, 10753269337589887334670, 741379205762167719365268
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(8) (of dimension 8) and let E be the exterior algebra of V (of dimension 256). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 03 2021
This is the number of 8-vicious walkers (aka vicious 8-watermelons) - see Essam and Guttmann (1995). This is the 8-walker analog of A001181. - N. J. A. Sloane, Mar 27 2021
In general, for d > 0, a(n) ~ BarnesG(d+1) * 2^(d*n + (2*d+1)*(d-1)/2) / (sqrt(d) * Pi^((d-1)/2) * n^((d^2 - 1)/2)). - Vaclav Kotesovec, Apr 01 2021

References

  • D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A142468:= func< n,k | Binomial(n,k)*(&*[Binomial(n+2*j,k+j)/Binomial(n+2*j,j): j in [1..7]]) >;
    A005366:= func< n | (&+[A142468(n,k): k in [0..n]]) >;
    [A005366(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
    
  • Mathematica
    A005366[n_]:=HypergeometricPFQ[{-7-n,-6-n,-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6,7,8},1] (* Richard L. Ollerton, Sep 13 2006 *)
  • PARI
    a(n) = my(d=8); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
    
  • SageMath
    def A005365(n): return simplify(hypergeometric([-7-n, -6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n],[2, 3, 4, 5, 6, 7, 8], 1))
    [A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022

Formula

a(n) = Hypergeometric8F7([-7-n, -6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n],[2, 3, 4, 5, 6, 7, 8], 1). - Richard L. Ollerton, Sep 13 2006
a(n) = S(8,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 1913625 * 2^(8*n + 74) / (Pi^(7/2) * n^(63/2)). - Vaclav Kotesovec, Apr 01 2021

Extensions

More terms from Sean A. Irvine, May 29 2016

A342967 a(n) = 1 + Sum_{j=1..n} Product_{k=0..j-1} binomial(2*n-1,n+k) / binomial(2*n-1,k).

Original entry on oeis.org

1, 2, 5, 22, 177, 2606, 70226, 3457742, 311348897, 51177188350, 15377065068510, 8430169458379450, 8446194335222422950, 15435904380166258833482, 51546769958534244310727102, 313937270864810066000897492222, 3493348088919874482660174997662017
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[Product[Binomial[2*n - 1, n + k]/Binomial[2*n - 1, k], {k, 0, j - 1}], {j, 1, n}]; Array[a, 17, 0] (* Amiram Eldar, Apr 01 2021 *)
    Table[1 + BarnesG[2*n + 1] * Sum[BarnesG[j + 1]*BarnesG[n - j + 1] / (BarnesG[n + j + 1]*BarnesG[2*n - j + 1]), {j, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 02 2021 *)
  • PARI
    a(n) = 1+sum(j=1, n, prod(k=0, j-1, binomial(2*n-1, n+k)/binomial(2*n-1, k)));
    
  • PARI
    a(n) = sum(j=0, n, prod(k=0, n-1, binomial(n+k, j)/binomial(j+k, j)));

Formula

a(n) = Sum_{j=0..n} Product_{k=0..n-1} binomial(n+k,j)/binomial(j+k,j).
a(n) ~ c * exp(1/12) * 2^(4*n^2 - 1/12) / (A * n^(1/12) * 3^(9*n^2/4 - 1/6)), where c = JacobiTheta3(0,1/3) = EllipticTheta[3, 0, 1/3] = 1.69145968168171534134842... if n is even, and c = JacobiTheta2(0,1/3) = EllipticTheta[2, 0, 1/3] = 1.69061120307521423305296... if n is odd, and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 02 2021
Showing 1-6 of 6 results.