A237770
Number of standard Young tableaux with n cells without a succession v, v+1 in a row.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, 5583, 19683, 72162, 274796, 1082439, 4406706, 18484332, 79818616, 353995743, 1611041726, 7510754022, 35842380314, 174850257639, 871343536591, 4430997592209, 22978251206350, 121410382810005, 653225968918521
Offset: 0
The a(5) = 9 such tableaux of 5 are:
[1] [2] [3] [4] [5] [6] [7] [8] [9]
135 13 135 13 13 14 14 15 1
24 24 2 25 2 25 2 2 2
5 4 4 4 3 3 3 3
5 5 4 4
5
The corresponding ballot sequences are:
1: [ 0 1 0 1 0 ]
2: [ 0 1 0 1 2 ]
3: [ 0 1 0 2 0 ]
4: [ 0 1 0 2 1 ]
5: [ 0 1 0 2 3 ]
6: [ 0 1 2 0 1 ]
7: [ 0 1 2 0 3 ]
8: [ 0 1 2 3 0 ]
9: [ 0 1 2 3 4 ]
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..68 (terms 0..48 from Alois P. Heinz)
- Timothy Y. Chow, Henrik Eriksson and C. Kenneth Fan, Chess Tableaux, The Electronic Journal of Combinatorics, vol.11, no.2, (2005).
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
Cf.
A238126 (tableaux with one succession),
A238127 (two successions).
-
h:= proc(l, j) option remember; `if`(l=[], 1,
`if`(l[1]=0, h(subsop(1=[][], l), j-1), add(
`if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]),
h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l))))
end:
g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0),
`if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [i, l[]]))))
end:
a:= n-> g(n, n, []):
seq(a(n), n=0..30);
# second Maple program (counting ballot sequences):
b:= proc(n, v, l) option remember;
`if`(n<1, 1, add(`if`(i<>v and (i=1 or l[i-1]>l[i]),
b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+
b(n-1, nops(l)+1, [l[], 1]))
end:
a:= proc(n) option remember; forget(b); b(n-1, 1, [1]) end:
seq(a(n), n=0..30);
-
b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i != v && (i == 1 || l[[i-1]] > l[[i]]), b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; a[n_] := a[n] = b[n-1, 1, {1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from 2nd Maple program *)
A214088
Number A(n,k) of n X k nonconsecutive chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 0, 7, 0, 1, 1, 1, 0, 0, 1, 1, 35, 27, 5, 1, 1, 1, 0, 0, 1, 0, 212, 0, 128, 0, 1, 1, 1, 0, 0, 1, 1, 1421, 5075, 6212, 640, 14, 1, 1, 1, 0, 0, 1, 0, 10128, 0, 430275, 0, 3351, 0, 1, 1
Offset: 0
A(3,5) = 1:
[1 4 7 10 13]
[2 5 8 11 14]
[3 6 9 12 15].
A(7,2) = 5:
[1 8] [1 6] [1 4] [1 6] [1 4]
[2 9] [2 7] [2 5] [2 7] [2 5]
[3 10] [3 10] [3 10] [3 8] [3 8]
[4 11] [4 11] [6 11] [4 9] [6 9]
[5 12] [5 12] [7 12] [5 12] [7 12]
[6 13] [8 13] [8 13] [10 13] [10 13]
[7 14] [9 14] [9 14] [11 14] [11 14].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 1, 0, 1, 0, 1, ...
1, 1, 2, 7, 35, 212, 1421, 10128, ...
1, 1, 0, 27, 0, 5075, 0, 2402696, ...
1, 1, 5, 128, 6212, 430275, 42563460, 5601745187, ...
- Alois P. Heinz, Antidiagonals n = 0..21, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]};
If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, {i -> l[[i]]-1}], i], 0], {i, 1, n}]] ]; a [n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
A214020
Number A(n,k) of n X k chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 0, 22, 0, 22, 0, 1, 1, 1, 1, 5, 92, 324, 324, 92, 5, 1, 1, 1, 1, 0, 422, 0, 8716, 0, 422, 0, 1, 1, 1, 1, 14, 2074, 47570, 343234, 343234, 47570, 2074, 14, 1, 1
Offset: 0
A(4,3) = A(3,4) = 6:
[1 4 7] [1 4 5] [1 2 3] [1 4 7] [ 1 4 7] [ 1 2 3]
[2 5 10] [2 7 10] [4 7 10] [2 5 10] [ 2 5 8] [ 4 5 6]
[3 8 11] [3 8 11] [5 8 11] [3 6 11] [ 3 6 9] [ 7 8 9]
[6 9 12] [6 9 12] [6 9 12] [8 9 12] [10 11 12] [10 11 12].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 1, 0, 2, 0, 5, ...
1, 1, 1, 2, 6, 22, 92, 422, ...
1, 1, 0, 6, 0, 324, 0, 47570, ...
1, 1, 2, 22, 324, 8716, 343234, 17423496, ...
1, 1, 0, 92, 0, 343234, 0, 8364334408, ...
1, 1, 5, 422, 47570, 17423496, 8364334408, 6873642982160, ...
- Alois P. Heinz, Antidiagonals n = 0..24, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1,
add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0,
args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs))
end:
A:= (n, k)-> `if`(n
-
b[args_List] := b[args] = Module[{s = Total[args], nargs = Length[args]}, If[s == 0, 1, Sum[If[Mod[s + i - args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i + 1]]], b[ReplacePart[args, i -> args[[i]] - 1]], 0], {i, 1, nargs}]]]; A[n_, k_] := If[n < k, A[k, n], If[k < 2, 1, b[Array[n &, k]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
A214159
Number of n X 3 nonconsecutive tableaux.
Original entry on oeis.org
1, 0, 1, 6, 72, 960, 14257, 228738, 3896062, 69590192, 1291977768, 24767357824, 487787117424, 9830929279248, 202119964701201, 4228355224663002, 89820746194643154, 1934075860467190608, 42153272431384984926, 928785495190695948612, 20666589509182675178064
Offset: 0
a(2) = 1:
[1 3 5]
[2 4 6].
a(3) = 6:
[1 4 7] [1 3 7] [1 4 6] [1 3 6] [1 3 6] [1 3 5]
[2 5 8] [2 5 8] [2 5 8] [2 5 8] [2 4 8] [2 6 8]
[3 6 9] [4 6 9] [3 7 9] [4 7 9] [5 7 9] [4 7 9].
-
b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([3$n], 0):
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 0, 1][n+1],
((22120*n^5 -58226*n^4 +31547*n^3 +42158*n^2 -53589*n +16146)*a(n-1)
-(5988 -27068*n +50360*n^2 -62154*n^3 +49630*n^4 -15400*n^5)*a(n-2)
-(7560*n^5 -23058*n^4 +24333*n^3 -11976*n^2 +2967*n -306)*a(n-3))
/(6*(n+2)*(140*n^2-357*n+234)*(n+1)^2))
end:
seq(a(n), n=0..25);
-
b[l_, t_] := b[l, t] = Module[{n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, n}]]];
a[n_] := b[Table[3, n], 0];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 29 2018, from first Maple program *)
A214875
Number of 4 X n nonconsecutive tableaux.
Original entry on oeis.org
1, 1, 6, 72, 1289, 29889, 831174, 26455564, 934766625, 35896627737, 1475461220832, 64175536953702, 2928055871469177, 139180794974903769, 6854741942660442918, 348244986517582367748, 18183302860592129336633, 972820066413029570529513, 53192593416458179801289034
Offset: 0
a(2) = 6:
[1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
[2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
[3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
[4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
- Alois P. Heinz, Table of n, a(n) for n = 0..534
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
-
a:= proc(n) option remember; `if`(n<3, [1,1,6][n+1], ((1620*n^7
-13770*n^6 +41958*n^5 -48762*n^4 -6642*n^3 +62532*n^2 -48600*n
+11664)*a(n-3) +(-3260*n^7 +11360*n^6 -4169*n^5 -19015*n^4
+14521*n^3 +6179*n^2 -7380*n +1764)*a(n-2) +(-80*n +1964*n^3
-7469*n^4 +3631*n^2 -5236*n^5 +2590*n^6 +1660*n^7 -300)*a(n-1))
/((2*n+3)*(n+3)*(10*n^2-15*n-1)*(n+2)^3))
end:
seq(a(n), n=0..25);
-
a[0] = a[1] = 1; a[2] = 6; a[n_] := a[n] = ((1620n^7 - 13770n^6 + 41958n^5 - 48762n^4 - 6642n^3 + 62532n^2 - 48600n + 11664) a[n-3] + (-3260n^7 + 11360n^6 - 4169n^5 - 19015n^4 + 14521n^3 + 6179n^2 - 7380n + 1764) a[n-2] + (-80n + 1964n^3 - 7469n^4 + 3631n^2 - 5236n^5 + 2590n^6 + 1660n^7 - 300) a[n-1])/((2n + 3)(n + 3)(10n^2 - 15n - 1)(n + 2)^3);
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
A264103
Number of n X n nonconsecutive tableaux.
Original entry on oeis.org
1, 1, 1, 6, 1289, 13652068, 11865331748843, 1232033659827201777222, 20955050449849509663209289613921, 76615072242390448445916336191834325715261848, 76456972050113830615729276134092575545874371011199394401950, 25770844284993968943713846068617488831241440984966512955013952234546614462044
Offset: 0
a(3) = 6:
[1 4 7] [1 3 7] [1 4 6] [1 3 6] [1 3 6] [1 3 5]
[2 5 8] [2 5 8] [2 5 8] [2 5 8] [2 4 8] [2 6 8]
[3 6 9] [4 6 9] [3 7 9] [4 7 9] [5 7 9] [4 7 9].
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
-
b[l_, t_] := b[l, t] = Module[{n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]]];
a[n_] := a[n] = If[n<1, 1, b[Array[n&, n], 0]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 11}] (* Jean-François Alcover, Sep 08 2021, after Alois P. Heinz in A214021 *)
Showing 1-6 of 6 results.
Comments