A214021
Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 6, 6, 1, 1, 1, 0, 1, 22, 72, 18, 1, 1, 1, 0, 1, 92, 1289, 960, 57, 1, 1, 1, 0, 1, 422, 29889, 93964, 14257, 186, 1, 1, 1, 0, 1, 2074, 831174, 13652068, 8203915, 228738, 622, 1, 1
Offset: 0
A(2,4) = 1:
[1 3 5 7]
[2 4 6 8].
A(4,2) = 6:
[1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
[2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
[3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
[4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 22, 92, 422, ...
1, 1, 6, 72, 1289, 29889, 831174, ...
1, 1, 18, 960, 93964, 13652068, 2621897048, ...
1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
- Alois P. Heinz, Antidiagonals n = 0..23, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A214020
Number A(n,k) of n X k chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 0, 22, 0, 22, 0, 1, 1, 1, 1, 5, 92, 324, 324, 92, 5, 1, 1, 1, 1, 0, 422, 0, 8716, 0, 422, 0, 1, 1, 1, 1, 14, 2074, 47570, 343234, 343234, 47570, 2074, 14, 1, 1
Offset: 0
A(4,3) = A(3,4) = 6:
[1 4 7] [1 4 5] [1 2 3] [1 4 7] [ 1 4 7] [ 1 2 3]
[2 5 10] [2 7 10] [4 7 10] [2 5 10] [ 2 5 8] [ 4 5 6]
[3 8 11] [3 8 11] [5 8 11] [3 6 11] [ 3 6 9] [ 7 8 9]
[6 9 12] [6 9 12] [6 9 12] [8 9 12] [10 11 12] [10 11 12].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 1, 0, 2, 0, 5, ...
1, 1, 1, 2, 6, 22, 92, 422, ...
1, 1, 0, 6, 0, 324, 0, 47570, ...
1, 1, 2, 22, 324, 8716, 343234, 17423496, ...
1, 1, 0, 92, 0, 343234, 0, 8364334408, ...
1, 1, 5, 422, 47570, 17423496, 8364334408, 6873642982160, ...
- Alois P. Heinz, Antidiagonals n = 0..24, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1,
add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0,
args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs))
end:
A:= (n, k)-> `if`(n
-
b[args_List] := b[args] = Module[{s = Total[args], nargs = Length[args]}, If[s == 0, 1, Sum[If[Mod[s + i - args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i + 1]]], b[ReplacePart[args, i -> args[[i]] - 1]], 0], {i, 1, nargs}]]]; A[n_, k_] := If[n < k, A[k, n], If[k < 2, 1, b[Array[n &, k]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
A214459
Number of n X 3 nonconsecutive chess tableaux.
Original entry on oeis.org
1, 0, 0, 1, 1, 7, 27, 128, 640, 3351, 18313, 103404, 600538, 3571717, 21683185, 134005373, 841259885, 5355078350, 34512405410, 224908338137, 1480420941781, 9833512593113, 65860442383487, 444453988418791, 3020274890688447, 20656019108074552, 142107550142684602
Offset: 0
a(5) = 7:
[1 6 11] [1 4 11] [1 6 9] [1 4 9] [1 4 7] [1 4 7] [1 4 7]
[2 7 12] [2 5 12] [2 7 10] [2 5 10] [2 5 10] [2 5 10] [2 5 8]
[3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 6 13] [3 10 13]
[4 9 14] [6 9 14] [4 11 14] [6 11 14] [6 11 14] [8 11 14] [6 11 14]
[5 10 15] [7 10 15] [5 12 15] [7 12 15] [9 12 15] [9 12 15] [9 12 15].
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..70 from Alois P. Heinz)
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([3$n], 0):
seq(a(n), n=0..25);
-
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, {i -> l[[i]] - 1}], i], 0], {i, 1, n}]]]; a[n_] := If[n < 1, 1, b[Array[3&, n], 0]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 13 2017, after Alois P. Heinz *)
A214460
Number of 4 X 2*n+1 nonconsecutive chess tableaux.
Original entry on oeis.org
1, 1, 1, 1, 2, 9, 44, 233, 1472, 10610, 82828, 688511, 6042580, 55523953, 530498426, 5242548633, 53361716373, 557495995958, 5961086843092, 65077096683358, 723862991146939, 8189257485453446, 94087399914391254, 1096331953010025684, 12941148147430923798
Offset: 0
a(4) = 2:
[1, 4, 7, 12, 15, 20, 23, 28, 31] [1, 4, 7, 10, 13, 16, 19, 22, 25]
[2, 5, 10, 13, 18, 21, 26, 29, 34] [2, 5, 8, 11, 14, 17, 28, 31, 34]
[3, 8, 11, 16, 19, 24, 27, 32, 35] [3, 6, 9, 20, 23, 26, 29, 32, 35]
[6, 9, 14, 17, 22, 25, 30, 33, 36] [12, 15, 18, 21, 24, 27, 30, 33, 36].
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..70 from Alois P. Heinz)
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
Bisection (odd part) of row n=4 of
A214088.
-
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([(2*n+1)$4], 0):
seq(a(n), n=0..25);
-
b[l_List, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Total[l]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]]]; a[n_] := b[{2n+1, 2n+1, 2n+1, 2n+1}, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017, translated from Maple *)
A214461
Number of 5 X n nonconsecutive chess tableaux.
Original entry on oeis.org
1, 1, 2, 7, 35, 212, 1421, 10128, 75724, 593905, 4927764, 43884083, 426665219, 4591883867, 54943702996, 725753304587, 10428313247758, 160361700765626, 2602492613187389, 44111609147837212, 775162479337156853, 14049351313802046511, 261640973700411314373
Offset: 0
a(3) = 7:
[1 6 11] [1 4 11] [1 6 9] [1 4 9] [1 4 7] [1 4 7] [1 4 7]
[2 7 12] [2 5 12] [2 7 10] [2 5 10] [2 5 10] [2 5 10] [2 5 8]
[3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 6 13] [3 10 13]
[4 9 14] [6 9 14] [4 11 14] [6 11 14] [6 11 14] [8 11 14] [6 11 14]
[5 10 15] [7 10 15] [5 12 15] [7 12 15] [9 12 15] [9 12 15] [9 12 15].
- Vaclav Kotesovec, Table of n, a(n) for n = 0..114 (terms 0..70 from Alois P. Heinz)
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([n$5], 0):
seq(a(n), n=0..25);
-
b[l_List, t_] := b[l, t] = With[{n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, n}]]]; a[n_] := b[Table[n, {5}], 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017, translated from Maple *)
A238020
Number of nonconsecutive chess tableaux with n cells.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 5, 10, 15, 33, 52, 126, 213, 537, 991, 2563, 5118, 13670, 29171, 81069, 180813, 525755, 1216996, 3693934, 8843831, 27797975, 69106326, 223116931, 577433770, 1903516721, 5136516772, 17257698892, 48388514996, 166022450140, 481137194184
Offset: 0
a(6) = 4:
[1] [1 6] [1 4] [1 4]
[2] [2] [2 5] [2 5]
[3] [3] [3] [3 6]
[4] [4] [6]
[5] [5]
[6]
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and
irem(s+i-l[i], 2)=1 and l[i]>`if`(i=n, 0, l[i+1]), b(subsop(
i=`if`(i=n and l[n]=1, [][], l[i]-1), l), i), 0), i=1..n))
end:
g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0), `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> g(n, n, []):
seq(a(n), n=0..32);
-
b[l_, t_] := b[l, t] = Module[{ n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, i -> If[i == n && l[[n]] == 1, Nothing, l[[i]] - 1]], i], 0], {i, 1, n}]]];
g[n_, i_, l_] := If[n == 0 || i == 1, b[Join[l, Table[1, n]], 0], If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Table[i, j]]], {j, 0, n/i}]]];
a[n_] := g[n, n, {}];
Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Nov 08 2017, after Alois P. Heinz *)
A238184
Sum of the squares of numbers of nonconsecutive chess tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 7, 16, 37, 107, 282, 1020, 2879, 12507, 39347, 179231, 687974, 3225246, 14955561, 75999551, 392585613, 2271201137, 12183159188, 81562521256, 446611878413, 3336304592155, 19202329389234, 152803821604669, 958953289839930, 7835058287650579
Offset: 0
a(7) = 1 + 2^2 + 1 + 1 = 7:
.
: [1111111] : [22111] : [3211] : [322] : <- shapes
:-----------+--------------+---------+---------:
: [1] : [1 6] [1 4] : [1 4 7] : [1 4 7] :
: [2] : [2 7] [2 5] : [2 5] : [2 5] :
: [3] : [3] [3] : [3] : [3 6] :
: [4] : [4] [6] : [6] : :
: [5] : [5] [7] : : :
: [6] : : : :
: [7] : : : :
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and
irem(s+i-l[i], 2)=1 and l[i]>`if`(i=n, 0, l[i+1]), b(subsop(
i=`if`(i=n and l[n]=1, [][], l[i]-1), l), i), 0), i=1..n))
end:
g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0)^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> g(n, n, []):
seq(a(n), n=0..32);
-
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Total[l]}; If[s == 0, 1, Sum[If[t != i && Mod[s+i-l[[i]], 2] == 1 && l[[i]] > If[i==n, 0, l[[i+1]]], b[ReplacePart[l, i -> If[i==n && l[[n]]==1, Nothing, l[[i]]-1]], i], 0], {i, 1, n}]]]; g[n_, i_, l_] := g[n, i, l] = If[n==0 || i==1, b[Join[l, Array[1&, n]], 0]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
Showing 1-7 of 7 results.
Comments