A238014 Number of chess tableaux with n cells.
1, 1, 2, 2, 4, 6, 12, 20, 48, 84, 216, 408, 1104, 2280, 6288, 14128, 40256, 96240, 287904, 714016, 2246592, 5750112, 18900672, 49973568, 169592576, 466175808, 1618212224, 4637091200, 16393123072, 48926588544, 176264622336, 545058738944, 2008508679168
Offset: 0
Keywords
Examples
a(5) = 6: [1] [1 4] [1 2 3] [1 4 5] [1 2 3] [1 2 3 4 5] [2] [2 5] [4] [2] [4 5] [3] [3] [5] [3] [4] [5] Note how the tableaux become partial chessboards when reduced modulo 2: [1] [1 0] [1 0 1] [1 0 1] [1 0 1] [1 0 1 0 1] [0] [0 1] [0] [0] [0 1] [1] [1] [1] [1] [0] [1] From _Joerg Arndt_, Feb 28 2014: (Start) The a(7) = 20 ballot sequences are (dots for zeros): 01: [ . . . . . . . ] 02: [ . . . . . 1 1 ] 03: [ . . . . . 1 2 ] 04: [ . . . 1 1 . . ] 05: [ . . . 1 1 . 2 ] 06: [ . . . 1 1 1 2 ] 07: [ . . . 1 2 . . ] 08: [ . . . 1 2 . 1 ] 09: [ . . . 1 2 3 1 ] 10: [ . . . 1 2 3 4 ] 11: [ . 1 2 . . . . ] 12: [ . 1 2 . . . 1 ] 13: [ . 1 2 . . 3 1 ] 14: [ . 1 2 . . 3 4 ] 15: [ . 1 2 . 1 2 . ] 16: [ . 1 2 . 1 3 . ] 17: [ . 1 2 . 1 3 4 ] 18: [ . 1 2 3 4 . . ] 19: [ . 1 2 3 4 . 1 ] 20: [ . 1 2 3 4 5 6 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..58
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
Programs
-
Maple
b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1, `if`(args[nargs]=0, b(subsop(nargs=NULL, [args])[]), add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0, args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs))) end: g:= (n, i, l)-> `if`(n=0 or i=1, b(l[], 1$n), `if`(i<1, 0, add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))): a:= n-> g(n, n, []): seq(a(n), n=0..32);
-
Mathematica
b[args_] := b[args] = Module[{nargs = Length[args], s = Total[args]}, If[s == 0, 1, If[Last[args] == 0, b[Most[args]], Sum[If[Mod[s + i - args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i + 1]]], b[Append[ ReplacePart[ args, i -> args[[i]] - 1], 0]], 0], {i, 1, nargs}]]]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, b[Join[l, Table[1, n]]], If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Table[i, j]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Nov 14 2017, after Alois P. Heinz *)
Formula
a(n) = Sum_{lambda : partitions(n)} chess(lambda), where chess(lambda) is the number of chess tableaux of shape lambda.
Comments