A046997 Number of Baxter permutations: A001183/2.
0, 1, 1, 9, 33, 187, 847, 4911, 25849
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x + 2*x^2 + 6*x^3 + 22*x^4 + 92*x^5 + 422*x^6 + 2074*x^7 + ... a(4) = 22 since all permutations of length 4 are Baxter except 2413 and 3142. - _Michael Somos_, Jul 19 2002
Concatenation([1], List([1..30], n-> 2*Sum([1..n], k-> Binomial(n+1,k-1)* Binomial(n+1,k)*Binomial(n+1, k+1) )/(n*(n+1)^2) )); # G. C. Greubel, Jul 24 2019
a001181 0 = 1 a001181 n = (sum $ map (\k -> product $ map (a007318 (n+1)) [k-1..k+1]) [1..n]) `div` (a006002 n) -- Reinhard Zumkeller, Oct 23 2011
[1] cat [2*(&+[Binomial(n+1,k-1)*Binomial(n+1,k)* Binomial(n+1, k+1): k in [1..n]])/(n*(n+1)^2): n in [1..30]]; // G. C. Greubel, Jul 24 2019
C := binomial; A001181 := proc(n) local k; add(C(n+1, k-1)*C(n+1, k)* C(n+1, k+1)/ (C(n+1, 1)*C(n+1, 2)), k = 1..n); end; # second Maple program: a:= proc(n) option remember; `if`(n<2, 1, ((7*n^2+7*n-2)*a(n-1)+8*(n-1)*(n-2)*a(n-2))/((n+2)*(n+3))) end: seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
A001181[n_] := HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -1] (* Richard L. Ollerton, Sep 13 2006 *) a[0]=1; a[1]=1; a[n_] := a[n] = ((7n^2+7n-2)*a[n-1] + 8(n-1)(n-2)*a[n-2]) / ((n+2)(n+3)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 28 2015, from 3rd formula *)
{a(n) = if( n<0, 0, sum( k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2))))}; /* Michael Somos, Jul 19 2002 */
from sympy import binomial as C def a(n): return sum([(C(n + 1, k - 1)*C(n + 1, k)*C(n + 1, k + 1))/(C(n + 1, 1) * C(n + 1, 2)) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
[1]+[2*sum(binomial(n+1,k-1)*binomial(n+1,k)*binomial(n+1, k+1) for k in (1..n))/(n*(n+1)^2) for n in (1..30)] # G. C. Greubel, Jul 24 2019 print([BaxterPermutations(n).cardinality() for n in range(25)]) # Peter Luschny, May 21 2024
Comments