cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047083 a(n) = Sum_{i=0..floor((n+1)/2)} A047080(n,i).

Original entry on oeis.org

1, 2, 2, 5, 7, 15, 23, 49, 76, 161, 253, 532, 845, 1766, 2829, 5881, 9488, 19631, 31863, 65649, 107112, 219857, 360360, 737152, 1213150, 2473930, 4086217, 8309252, 13769519, 27927146, 46416937, 93915759, 156520328, 315982677, 527937429, 1063586803, 1781131638
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-j,j): j in [0..Floor((n+1)/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
     Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047083[n_]:= A047083[n]= Sum[A[n-k,k], {k,0,Floor[(n+1)/2]}];
    Table[A047083[n], {n,0,50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-j,j) for j in range(1+((n+1)//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Extensions

Data corrected by Sean A. Irvine, May 11 2021