A047085 a(n) = T(2*n, n), array T as in A047080.
1, 1, 3, 9, 27, 83, 259, 817, 2599, 8323, 26797, 86659, 281287, 915907, 2990383, 9786369, 32092959, 105435607, 346950321, 1143342603, 3772698725, 12463525229, 41218894577, 136451431723, 452116980643, 1499282161375, 4975631425581, 16524213199923, 54913514061867
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( Sqrt((1-x)/(1 -3*x-x^2-x^3)) )); // G. C. Greubel, Oct 30 2022 -
Mathematica
CoefficientList[Series[Sqrt[(1-x)/(1-3*x-x^2-x^3)], {x, 0, 50}], x] (* G. C. Greubel, Oct 30 2022 *)
-
SageMath
def A047085_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( sqrt((1-x)/(1-3*x-x^2-x^3)) ).list() A047085_list(50) # G. C. Greubel, Oct 30 2022
Formula
From G. C. Greubel, Oct 30 2022: (Start)
a(n) = A171155(n).
G.f.: sqrt((1 - x)/(1 - 3*x - x^2 - x^3)). (End)
Extensions
Data corrected by Sean A. Irvine, May 11 2021