cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047226 Numbers that are congruent to {0, 1, 2, 3, 4} mod 6; a(n)=floor(6(n-1)/5).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | n mod 6 in [0..4]]; // Vincenzo Librandi, Jan 06 2013
  • Maple
    A047226 := proc(n)
        option remember;
        if n <= 6 then
            op(n,[0,1,2,3,4,6]) ;
        else
            procname(n-1)+procname(n-5)-procname(n-6) ;
        end if;
    end proc: # R. J. Mathar, Jul 25 2013
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Formula

G.f.: x^2*(1+x+x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Sep 17 2015, Jul 16 2013: (Start)
a(n) = floor( 6*(n-1)/5 ).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.
a(n) = n - 1 + floor((n-1)/5). (End)
Sum_{n>=2} (-1)^n/a(n) = (9-4*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) + log(2)/6. - Amiram Eldar, Dec 17 2021

Extensions

Explicit formula added to definition by M. F. Hasler, Oct 05 2014