A047248 Numbers that are congruent to {0, 2, 3, 4, 5} (mod 6).
0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A047252.
Programs
-
Mathematica
Rest[CoefficientList[Series[x^2*(2 + x + x^2 + x^3 + x^4)/((x^4 + x^3 + x^2 + x + 1)*(x - 1)^2), {x, 0, 50}], x]] (* G. C. Greubel, Nov 02 2017 *) DeleteCases[Range[0,70],?(Mod[#,6]==1&)] (* or *) Complement[ Range[ 0,70], Range[1,70,6]] (* _Harvey P. Dale, Dec 30 2017 *)
-
PARI
x='x+O('x^50); concat([0], Vec(x^2*(2+x+x^2+x^3+x^4)/((x^4 +x^3 +x^2 +x+1)*(x-1)^2))) \\ G. C. Greubel, Nov 02 2017
Formula
G.f.: x^2*(2+x+x^2+x^3+x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
Sum_{n>=2} (-1)^n/a(n) = log(2+sqrt(3))/(2*sqrt(3)) + log(2)/6 - (9-4*sqrt(3))*Pi/36. - Amiram Eldar, Dec 17 2021