A047265 Triangle T(n,k), for n >= 1, 1 <= k <= n, read by rows, giving coefficient of x^n in expansion of (Product_{j>=1} (1-(-x)^j) - 1 )^k.
1, -1, 1, 0, -2, 1, 0, 1, -3, 1, -1, 0, 3, -4, 1, 0, -2, -1, 6, -5, 1, -1, 2, -3, -4, 10, -6, 1, 0, -2, 6, -3, -10, 15, -7, 1, 0, 2, -6, 12, 0, -20, 21, -8, 1, 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, -1, 2, -3, -6, 40, -65, 21, 62, -84, 45, -11, 1
Offset: 1
Examples
Triangle starts: 1, -1, 1, 0, -2, 1, 0, 1, -3, 1, -1, 0, 3, -4, 1, 0, -2, -1, 6, -5, 1, -1, 2, -3, -4, 10, -6, 1, 0, -2, 6, -3, -10, 15, -7, 1, 0, 2, -6, 12, 0, -20, 21, -8, 1, 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, -1, 2, -3, -6, 40, ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); T:= func< n,k | Coefficient(R!( (-1)^n*(-1 + (&*[1 - x^j: j in [1..n]]) )^k ), n) >; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 07 2023 -
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) end: seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 07 2021
-
Mathematica
T[n_, k_]:= SeriesCoefficient[(-1)^n*(Product[(1-x^j), {j,n}] - 1)^k, {x, 0, n}]; Table[T[n, k], {n,12}, {k,n}]//Flatten (* Jean-François Alcover, Dec 05 2013 *)
-
PARI
T(n,k) = polcoeff((-1)^n*(Ser(prod(i=1,n,1-x^i)-1)^k), n) \\ Ralf Stephan, Dec 08 2013
-
SageMath
from sage.combinat.q_analogues import q_pochhammer P.
= PowerSeriesRing(ZZ, 50) def T(n,k): return P( (-1)^n*(-1 + q_pochhammer(n,x,x) )^k ).list()[n] flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Sep 07 2023
Formula
G.f. column k: (Product_{j>=1} (1 - (-x)^j) - 1)^k, for k >= 1. See the name and a Riordan triangle comment above. - Wolfdieter Lang, Feb 16 2021
From G. C. Greubel, Sep 07 2023: (Start)
T(n, n) = 1.
T(n, n-1) = -A000027(n-1).
T(n, n-2) = A000217(n-3).
T(n, n-3) = -A000292(n-5).
Sum_{k=1..n} T(n, k) = (-1)^n * A307059(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A000041(n). (End)
Comments