A047271 Numbers that are congruent to {0, 3, 5} mod 6.
0, 3, 5, 6, 9, 11, 12, 15, 17, 18, 21, 23, 24, 27, 29, 30, 33, 35, 36, 39, 41, 42, 45, 47, 48, 51, 53, 54, 57, 59, 60, 63, 65, 66, 69, 71, 72, 75, 77, 78, 81, 83, 84, 87, 89, 90, 93, 95, 96, 99, 101, 102, 105, 107, 108, 111, 113, 114, 117, 119, 120, 123, 125
Offset: 1
Examples
G.f. = 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 11*x^6 + 12*x^7 +15*x^8 + 17*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
I:=[0, 3, 5, 6]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
-
Maple
A047271:=n->(6*n-4+cos(2*n*Pi/3)-sqrt(3)*sin(2*Pi*n/3))/3: seq(A047271(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0,120], MemberQ[{0,3,5}, Mod[#,6]]&] (* Vincenzo Librandi, Apr 26 2012 *)
Formula
From Colin Barker, Mar 13 2012: (Start)
G.f.: x^2*(3+2*x+x^2)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (6*n-4+cos(2*n*Pi/3)-sqrt(3)*sin(2*Pi*n/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-3, a(3k-2) = 6k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/6 + log(2+sqrt(3))/(2*sqrt(3)) - Pi/12. - Amiram Eldar, Dec 14 2021
Extensions
G.f. corrected by Colin Barker, May 14 2012