A047278 Numbers that are congruent to {1, 2, 6} mod 7.
1, 2, 6, 8, 9, 13, 15, 16, 20, 22, 23, 27, 29, 30, 34, 36, 37, 41, 43, 44, 48, 50, 51, 55, 57, 58, 62, 64, 65, 69, 71, 72, 76, 78, 79, 83, 85, 86, 90, 92, 93, 97, 99, 100, 104, 106, 107, 111, 113, 114, 118, 120, 121, 125, 127, 128, 132, 134, 135, 139, 141
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [1..150] | n mod 7 in [1, 2, 6]]; // Wesley Ivan Hurt, Jun 07 2016
-
Maple
A047278:=n->(21*n-15+6*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047278(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
-
Mathematica
Table[(21*n-15+6*Cos[2*n*Pi/3]+4*Sqrt[3]*Sin[2*n*Pi/3])/9, {n, 80}] (* Wesley Ivan Hurt, Jun 07 2016 *) Select[Range[200],MemberQ[{1,2,6},Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,1,-1},{1,2,6,8},100] (* Harvey P. Dale, Dec 16 2018 *)
Formula
G.f.: x*(1+x+4*x^2+x^3) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (21*n-15+6*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-5, a(3k-2) = 7k-6. (End)