A047283 Numbers that are congruent to {0, 1, 3, 6} mod 7.
0, 1, 3, 6, 7, 8, 10, 13, 14, 15, 17, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 41, 42, 43, 45, 48, 49, 50, 52, 55, 56, 57, 59, 62, 63, 64, 66, 69, 70, 71, 73, 76, 77, 78, 80, 83, 84, 85, 87, 90, 91, 92, 94, 97, 98, 99, 101, 104, 105, 106, 108, 111
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 1, 3, 6]]; // Wesley Ivan Hurt, May 22 2016
-
Maple
A047283:=n->(14*n-15+I^(2*n)+(3+I)*I^(-n)+(3-I)*I^n)/8: seq(A047283(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
-
Mathematica
Select[Range[0,100], MemberQ[{0,1,3,6}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,3,6,7}, 60] (* Harvey P. Dale, Mar 09 2012 *)
Formula
G.f.: x^2*(1+2*x+3*x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Mar 09 2012
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = (14n-15+i^(2n)+(3+i)*i^(-n)+(3-i)*i^n)/8 where i=sqrt(-1).
Extensions
More terms from Wesley Ivan Hurt, May 22 2016