A047307 Numbers that are congruent to {3, 4, 5, 6} mod 7.
3, 4, 5, 6, 10, 11, 12, 13, 17, 18, 19, 20, 24, 25, 26, 27, 31, 32, 33, 34, 38, 39, 40, 41, 45, 46, 47, 48, 52, 53, 54, 55, 59, 60, 61, 62, 66, 67, 68, 69, 73, 74, 75, 76, 80, 81, 82, 83, 87, 88, 89, 90, 94, 95, 96, 97, 101, 102, 103, 104, 108, 109, 110, 111
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [3, 4, 5, 6]]; // Wesley Ivan Hurt, Jun 02 2016
-
Maple
A047307:=n->(14*n+1-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047307(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
-
Mathematica
Table[(14n+1-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *) LinearRecurrence[{1,0,0,1,-1},{3,4,5,6,10},70] (* Harvey P. Dale, Dec 28 2024 *)
Formula
G.f.: x*(3+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n+1-3*i^(2*n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8 where i=sqrt(-1).