cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047327 Numbers that are congruent to {3, 5, 6} mod 7.

Original entry on oeis.org

3, 5, 6, 10, 12, 13, 17, 19, 20, 24, 26, 27, 31, 33, 34, 38, 40, 41, 45, 47, 48, 52, 54, 55, 59, 61, 62, 66, 68, 69, 73, 75, 76, 80, 82, 83, 87, 89, 90, 94, 96, 97, 101, 103, 104, 108, 110, 111, 115, 117, 118, 122, 124, 125, 129, 131, 132, 136, 138, 139, 143
Offset: 1

Views

Author

Keywords

Comments

Also, numbers k such that (k^3+1)/7 is a nonnegative integer. - Bruno Berselli, Jan 16 2016

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [3, 5, 6]]; // Wesley Ivan Hurt, Jun 07 2016
  • Maple
    A047327:=n->(21*n-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047327(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{3, 5, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)

Formula

G.f.: x*(3+2*x+x^2+x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-2, a(3k-2) = 7k-4. (End)