A047327 Numbers that are congruent to {3, 5, 6} mod 7.
3, 5, 6, 10, 12, 13, 17, 19, 20, 24, 26, 27, 31, 33, 34, 38, 40, 41, 45, 47, 48, 52, 54, 55, 59, 61, 62, 66, 68, 69, 73, 75, 76, 80, 82, 83, 87, 89, 90, 94, 96, 97, 101, 103, 104, 108, 110, 111, 115, 117, 118, 122, 124, 125, 129, 131, 132, 136, 138, 139, 143
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [3, 5, 6]]; // Wesley Ivan Hurt, Jun 07 2016
-
Maple
A047327:=n->(21*n-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047327(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{3, 5, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)
Formula
G.f.: x*(3+2*x+x^2+x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-2, a(3k-2) = 7k-4. (End)
Comments