cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047338 Numbers that are congruent to {1, 2, 3, 4} mod 7.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25, 29, 30, 31, 32, 36, 37, 38, 39, 43, 44, 45, 46, 50, 51, 52, 53, 57, 58, 59, 60, 64, 65, 66, 67, 71, 72, 73, 74, 78, 79, 80, 81, 85, 86, 87, 88, 92, 93, 94, 95, 99, 100, 101, 102, 106, 107, 108, 109
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 2, 3, 4]]; // Wesley Ivan Hurt, May 23 2016
  • Maple
    A047338:=n->(14*n-15-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047338(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
  • Mathematica
    Table[(14n-15-3*I^(2n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *)

Formula

G.f.: x*(1+x+x^2+x^3+3*x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-15-3*i^(2n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047348(n), a(2n-1) = A047356(n). (End)
E.g.f.: (12 + 3*(sin(x) - cos(x)) + (7*x - 6)*sinh(x) + (7*x - 9)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016

Extensions

More terms from Wesley Ivan Hurt, May 23 2016