cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047366 Numbers that are congruent to {1, 3, 4, 5} mod 7.

Original entry on oeis.org

1, 3, 4, 5, 8, 10, 11, 12, 15, 17, 18, 19, 22, 24, 25, 26, 29, 31, 32, 33, 36, 38, 39, 40, 43, 45, 46, 47, 50, 52, 53, 54, 57, 59, 60, 61, 64, 66, 67, 68, 71, 73, 74, 75, 78, 80, 81, 82, 85, 87, 88, 89, 92, 94, 95, 96, 99, 101, 102, 103, 106, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 3, 4, 5]]; // Wesley Ivan Hurt, May 24 2016
  • Maple
    A047366:=n->(14*n-9-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047366(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
  • Mathematica
    Table[(14n-9-I^(2n)-(3-I)*I^(-n)-(3+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
    Select[Range@ 120, MemberQ[{1, 3, 4, 5}, Mod[#, 7]] &] (* Michael De Vlieger, May 24 2016 *)

Formula

G.f.: x*(1+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-9-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047346(k). (End)
E.g.f.: (8 + sin(x) - 3*cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, May 25 2016

Extensions

More terms from Wesley Ivan Hurt, May 24 2016