A047378 Numbers that are congruent to {2, 4, 5} mod 7.
2, 4, 5, 9, 11, 12, 16, 18, 19, 23, 25, 26, 30, 32, 33, 37, 39, 40, 44, 46, 47, 51, 53, 54, 58, 60, 61, 65, 67, 68, 72, 74, 75, 79, 81, 82, 86, 88, 89, 93, 95, 96, 100, 102, 103, 107, 109, 110, 114, 116, 117, 121, 123, 124, 128, 130, 131, 135, 137, 138, 142
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A153727 (first differences).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
A047378:=n->(21*n-9-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047378(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{2, 4, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 09 2016 *) LinearRecurrence[{1,0,1,-1},{2,4,5,9},100] (* Harvey P. Dale, Jul 14 2022 *)
Formula
G.f.: x*(2+2*x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-9-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-3, a(3k-2) = 7k-5. (End)