cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047378 Numbers that are congruent to {2, 4, 5} mod 7.

Original entry on oeis.org

2, 4, 5, 9, 11, 12, 16, 18, 19, 23, 25, 26, 30, 32, 33, 37, 39, 40, 44, 46, 47, 51, 53, 54, 58, 60, 61, 65, 67, 68, 72, 74, 75, 79, 81, 82, 86, 88, 89, 93, 95, 96, 100, 102, 103, 107, 109, 110, 114, 116, 117, 121, 123, 124, 128, 130, 131, 135, 137, 138, 142
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A153727 (first differences).

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 09 2016
  • Maple
    A047378:=n->(21*n-9-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047378(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{2, 4, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
    LinearRecurrence[{1,0,1,-1},{2,4,5,9},100] (* Harvey P. Dale, Jul 14 2022 *)

Formula

G.f.: x*(2+2*x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-9-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-3, a(3k-2) = 7k-5. (End)