A047380 Numbers that are congruent to {1, 2, 4, 5} mod 7.
1, 2, 4, 5, 8, 9, 11, 12, 15, 16, 18, 19, 22, 23, 25, 26, 29, 30, 32, 33, 36, 37, 39, 40, 43, 44, 46, 47, 50, 51, 53, 54, 57, 58, 60, 61, 64, 65, 67, 68, 71, 72, 74, 75, 78, 79, 81, 82, 85, 86, 88, 89, 92, 93, 95, 96, 99, 100, 102, 103, 106, 107, 109, 110
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Maple
A047380:=n->(14*n-11-3*I^(2*n)-(1+I)*I^(-n-1)-(1-I)*I^(n+1))/8: seq(A047380(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
-
Mathematica
Table[(14n-11-3I^(2n)-(1+I)I^(-n-1)-(1-I)I^(n+1))/8, {n, 80}] (* Wesley Ivan Hurt, May 20 2016 *) LinearRecurrence[{1,0,0,1,-1},{1,2,4,5,8},100] (* Harvey P. Dale, Jun 05 2016 *)
-
PARI
a(n)=(n-1)\4*7+[5,1,2,4][n%4+1] \\ Charles R Greathouse IV, Jun 11 2015
Formula
G.f.: x*(1+x+2*x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 11 - 3*i^(2*n) - (1+i)*i^(-n-1) - (1-i)*i^(n+1))/8 where i=sqrt(-1).