A047386 Numbers that are congruent to {0, 2, 5} mod 7.
0, 2, 5, 7, 9, 12, 14, 16, 19, 21, 23, 26, 28, 30, 33, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 79, 82, 84, 86, 89, 91, 93, 96, 98, 100, 103, 105, 107, 110, 112, 114, 117, 119, 121, 124, 126, 128, 131, 133, 135, 138, 140
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A011655. [Gary Detlefs, Mar 19 2010]
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 2, 5]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
seq(3*n-2*floor(n/3)-(n^2 mod 3), n=0..52); # Gary Detlefs, Mar 19 2010
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 2, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
Formula
a(n+1) = 3*n-2*floor(n/3)-(n^2 mod 3). - Gary Detlefs, Mar 19 2010
G.f.: x^2*(2+3*x+2*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-21+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-5, a(3k-2) = 7k-7. (End)