cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047386 Numbers that are congruent to {0, 2, 5} mod 7.

Original entry on oeis.org

0, 2, 5, 7, 9, 12, 14, 16, 19, 21, 23, 26, 28, 30, 33, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 79, 82, 84, 86, 89, 91, 93, 96, 98, 100, 103, 105, 107, 110, 112, 114, 117, 119, 121, 124, 126, 128, 131, 133, 135, 138, 140
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A011655. [Gary Detlefs, Mar 19 2010]

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 2, 5]]; // Wesley Ivan Hurt, Jun 09 2016
  • Maple
    seq(3*n-2*floor(n/3)-(n^2 mod 3), n=0..52); # Gary Detlefs, Mar 19 2010
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 2, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)

Formula

a(n+1) = 3*n-2*floor(n/3)-(n^2 mod 3). - Gary Detlefs, Mar 19 2010
G.f.: x^2*(2+3*x+2*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-21+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-5, a(3k-2) = 7k-7. (End)