A047392 Numbers that are congruent to {0, 1, 3, 5} mod 7.
0, 1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 56, 57, 59, 61, 63, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Magma
[n: n in [0..100] | n mod 7 in [0, 1, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
-
Maple
A047392:=n->(14*n-17-I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n)/8: seq(A047392(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
-
Mathematica
Table[(14n-17-I^(2n)+(1+I)*I^(-n)+(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *) Table[n + Floor[3 n/4 - 3/4] - 1, {n, 1, 70}] (* Bruno Berselli, Jun 15 2016 *)
Formula
G.f.: x^2*(1+2*x+2*x^2+2*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 17 - i^(2*n) + (1 + i)*i^(-n) + (1 - i)*i^n)/8.
a(n) = n + floor(3*n/4-3/4) - 1. - Bruno Berselli, Jun 15 2016
Extensions
More terms from Wesley Ivan Hurt, May 21 2016