cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047392 Numbers that are congruent to {0, 1, 3, 5} mod 7.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 56, 57, 59, 61, 63, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047371: n + floor(3*n/4-1/2) - 1; A047379: n + floor(3*n/4-1/4) - 1.

Programs

  • Magma
    [n: n in [0..100] | n mod 7 in [0, 1, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
  • Maple
    A047392:=n->(14*n-17-I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n)/8: seq(A047392(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(14n-17-I^(2n)+(1+I)*I^(-n)+(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
    Table[n + Floor[3 n/4 - 3/4] - 1, {n, 1, 70}] (* Bruno Berselli, Jun 15 2016 *)

Formula

G.f.: x^2*(1+2*x+2*x^2+2*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 17 - i^(2*n) + (1 + i)*i^(-n) + (1 - i)*i^n)/8.
a(2k) = A047383(k), a(2k-1) = A047355(k). (End)
a(n) = n + floor(3*n/4-3/4) - 1. - Bruno Berselli, Jun 15 2016

Extensions

More terms from Wesley Ivan Hurt, May 21 2016