A047395 Numbers that are congruent to {0, 2, 6} mod 8.
0, 2, 6, 8, 10, 14, 16, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46, 48, 50, 54, 56, 58, 62, 64, 66, 70, 72, 74, 78, 80, 82, 86, 88, 90, 94, 96, 98, 102, 104, 106, 110, 112, 114, 118, 120, 122, 126, 128, 130, 134, 136, 138, 142, 144, 146, 150, 152, 154, 158
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 2, 6]]; // Wesley Ivan Hurt, Jun 13 2016
-
Maple
A047395:=n->2*floor((4*n-3)/3); seq(A047395(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
-
Mathematica
Table[2 Floor[(4 n - 3)/3], {n, 100}] (* Wesley Ivan Hurt, Apr 01 2014 *) Flatten[Table[8n + {0, 2, 6}, {n, 0, 19}]] (* Alonso del Arte, Apr 11 2014 *) LinearRecurrence[{1, 0, 1, -1}, {0, 2, 6, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
Formula
From R. J. Mathar, Dec 05 2011: (Start)
G.f.: 2*x^2*(1+x)^2 / ((1+x+x^2)*(x-1)^2).
a(n) = 2 * A042965(n). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-6, a(3k-2) = 8k-8. (End)
a(n) = 2*(n - 1 + floor(n/3)). - Wolfdieter Lang, Sep 11 2021
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*log(sqrt(2)+2)/4 - (sqrt(2)-1)*log(2)/8. - Amiram Eldar, Dec 19 2021
Comments