A047400 Numbers that are congruent to {1, 3, 6} mod 8.
1, 3, 6, 9, 11, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 49, 51, 54, 57, 59, 62, 65, 67, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 97, 99, 102, 105, 107, 110, 113, 115, 118, 121, 123, 126, 129, 131, 134, 137, 139, 142, 145, 147, 150, 153, 155, 158
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n: n in [1..300] | n mod 8 in [1, 3, 6]]; // Vincenzo Librandi, Mar 27 2011
-
Maple
A047400:=n->2*(12*n-9+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047400(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{1, 3, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
-
PARI
a(n) = {x=8*floor((n-1)/3);if(n%3==1,x=x+1);if(n%3==2,x=x+3);if(n%3==0,x=x+6);x} \\ Michael B. Porter, Oct 02 2009
Formula
G.f.: x*(1+x)*(2x^2+x+1)/((-1+x)^2*(x^2+x+1)). a(n) = a(n-3)+8 for n>3. - R. J. Mathar, Apr 14 2008
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-9+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-5, a(3k-2) = 8k-7. (End)
Comments