cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047401 Numbers that are congruent to {0, 1, 3, 6} mod 8.

Original entry on oeis.org

0, 1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 22, 24, 25, 27, 30, 32, 33, 35, 38, 40, 41, 43, 46, 48, 49, 51, 54, 56, 57, 59, 62, 64, 65, 67, 70, 72, 73, 75, 78, 80, 81, 83, 86, 88, 89, 91, 94, 96, 97, 99, 102, 104, 105, 107, 110, 112, 113, 115, 118, 120, 121, 123
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A068073. - Jeremy Gardiner, Jul 20 2013.

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 1, 3, 6]]; // Wesley Ivan Hurt, Jun 01 2016
    
  • Maple
    A047401:=n->2*(n-1)+(I^(n*(n-1))-1)/2: seq(A047401(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,107], MemberQ[{0, 1, 3, 6}, Mod[#, 8]]&] (* Bruno Berselli, Dec 05 2011 *)
  • Maxima
    makelist(2*(n-1)+(%i^(n*(n-1))-1)/2,n,1,55); /* Bruno Berselli, Dec 05 2011 */
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(x^2*(1+x+2*x^2)/((x^2+1)*(x-1)^2))) \\ Altug Alkan, Jun 02 2016

Formula

G.f.: x^2*(1+x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
a(n) = 2*(n-1)+(i^(n*(n-1))-1)/2, where i=sqrt(-1). - Bruno Berselli, Dec 05 2011
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(2k) = A047452(k), a(2k-1) = A047470(k). (End)
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021