A047433 Numbers that are congruent to {2, 4, 5, 6} mod 8.
2, 4, 5, 6, 10, 12, 13, 14, 18, 20, 21, 22, 26, 28, 29, 30, 34, 36, 37, 38, 42, 44, 45, 46, 50, 52, 53, 54, 58, 60, 61, 62, 66, 68, 69, 70, 74, 76, 77, 78, 82, 84, 85, 86, 90, 92, 93, 94, 98, 100, 101, 102, 106, 108, 109, 110, 114, 116, 117, 118, 122, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [2, 4, 5, 6]]; // Wesley Ivan Hurt, May 26 2016
-
Maple
A047433:=n->(8*n-3-I^(2*n)-(2-I)*I^(-n)-(2+I)*I^n)/4: seq(A047433(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
-
Mathematica
Select[Range[120], MemberQ[{2,4,5,6}, Mod[#,8]]&] (* Harvey P. Dale, Mar 04 2011 *)
Formula
G.f.: x*(2+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3-i^(2*n)-(2-i)*i^(-n)-(2+i)*i^n)/4 where i=sqrt(-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = (3-sqrt(2))*Pi/16 + log(2)/4 + sqrt(2)*log(sqrt(2)-1)/8. - Amiram Eldar, Dec 25 2021