cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047433 Numbers that are congruent to {2, 4, 5, 6} mod 8.

Original entry on oeis.org

2, 4, 5, 6, 10, 12, 13, 14, 18, 20, 21, 22, 26, 28, 29, 30, 34, 36, 37, 38, 42, 44, 45, 46, 50, 52, 53, 54, 58, 60, 61, 62, 66, 68, 69, 70, 74, 76, 77, 78, 82, 84, 85, 86, 90, 92, 93, 94, 98, 100, 101, 102, 106, 108, 109, 110, 114, 116, 117, 118, 122, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [2, 4, 5, 6]]; // Wesley Ivan Hurt, May 26 2016
  • Maple
    A047433:=n->(8*n-3-I^(2*n)-(2-I)*I^(-n)-(2+I)*I^n)/4: seq(A047433(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
  • Mathematica
    Select[Range[120], MemberQ[{2,4,5,6}, Mod[#,8]]&]  (* Harvey P. Dale, Mar 04 2011 *)

Formula

G.f.: x*(2+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3-i^(2*n)-(2-i)*i^(-n)-(2+i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047406(k), a(2k-1) = A047617(k). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3-sqrt(2))*Pi/16 + log(2)/4 + sqrt(2)*log(sqrt(2)-1)/8. - Amiram Eldar, Dec 25 2021