cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047454 Numbers that are congruent to {1, 2, 3, 4} mod 8.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, 25, 26, 27, 28, 33, 34, 35, 36, 41, 42, 43, 44, 49, 50, 51, 52, 57, 58, 59, 60, 65, 66, 67, 68, 73, 74, 75, 76, 81, 82, 83, 84, 89, 90, 91, 92, 97, 98, 99, 100, 105, 106, 107, 108, 113, 114, 115, 116, 121, 122, 123
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 4, 9]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 15 2012
    
  • Maple
    A047454:=n->(-5-I^(2*n)-(1-I)*(-I)^n-(1+I)*I^n+4*n)/2: seq(A047454(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,300], MemberQ[{1,2,3,4}, Mod[#,8]]&] (* Vincenzo Librandi, May 15 2012 *)
  • PARI
    my(x='x+O('x^100)); Vec(x*(1+x+x^2+x^3+4*x^4)/((1-x)^2*(1+x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015

Formula

From Colin Barker, May 14 2012: (Start)
a(n) = (-5-(-1)^n-(1-i)*(-i)^n-(1+i)*i^n+4*n)/2 where i=sqrt(-1).
G.f.: x*(1+x+x^2+x^3+4*x^4)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 15 2012
a(2k) = A047463(k), a(2k-1) = A047471(k). - Wesley Ivan Hurt, Jun 01 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 + 3*log(2)/8. - Amiram Eldar, Dec 23 2021