A047454 Numbers that are congruent to {1, 2, 3, 4} mod 8.
1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, 25, 26, 27, 28, 33, 34, 35, 36, 41, 42, 43, 44, 49, 50, 51, 52, 57, 58, 59, 60, 65, 66, 67, 68, 73, 74, 75, 76, 81, 82, 83, 84, 89, 90, 91, 92, 97, 98, 99, 100, 105, 106, 107, 108, 113, 114, 115, 116, 121, 122, 123
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[1, 2, 3, 4, 9]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 15 2012
-
Maple
A047454:=n->(-5-I^(2*n)-(1-I)*(-I)^n-(1+I)*I^n+4*n)/2: seq(A047454(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Select[Range[0,300], MemberQ[{1,2,3,4}, Mod[#,8]]&] (* Vincenzo Librandi, May 15 2012 *)
-
PARI
my(x='x+O('x^100)); Vec(x*(1+x+x^2+x^3+4*x^4)/((1-x)^2*(1+x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
Formula
From Colin Barker, May 14 2012: (Start)
a(n) = (-5-(-1)^n-(1-i)*(-i)^n-(1+i)*i^n+4*n)/2 where i=sqrt(-1).
G.f.: x*(1+x+x^2+x^3+4*x^4)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 15 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 + 3*log(2)/8. - Amiram Eldar, Dec 23 2021