A047462 Numbers that are congruent to {0, 1, 4} mod 8.
0, 1, 4, 8, 9, 12, 16, 17, 20, 24, 25, 28, 32, 33, 36, 40, 41, 44, 48, 49, 52, 56, 57, 60, 64, 65, 68, 72, 73, 76, 80, 81, 84, 88, 89, 92, 96, 97, 100, 104, 105, 108, 112, 113, 116, 120, 121, 124, 128, 129, 132, 136, 137, 140, 144, 145, 148, 152, 153, 156
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047462:=n->(24*n-33-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047462(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 1, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
Formula
G.f.: x^2*(1+3*x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-33-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-4, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)