cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A281151 a(n) = floor(4*n*(n+1)/5).

Original entry on oeis.org

0, 1, 4, 9, 16, 24, 33, 44, 57, 72, 88, 105, 124, 145, 168, 192, 217, 244, 273, 304, 336, 369, 404, 441, 480, 520, 561, 604, 649, 696, 744, 793, 844, 897, 952, 1008, 1065, 1124, 1185, 1248, 1312, 1377, 1444, 1513, 1584, 1656, 1729, 1804, 1881, 1960, 2040, 2121, 2204, 2289
Offset: 0

Views

Author

Bruno Berselli, Jan 16 2017

Keywords

Crossrefs

Subsequence of A047462.
Partial sums of A047486.
Cf. A184005: n^2 - floor((n-2)^2/4).
Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), A281026 (k=3), this sequence (k=4), A194275 (k=5).

Programs

  • Magma
    [4*n*(n+1) div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n (n + 1)/5], {n, 0, 60}]
  • Maxima
    makelist(floor(4*n*(n+1)/5), n, 0, 60);
    
  • PARI
    vector(60, n, n--; floor(4*n*(n+1)/5))
    
  • Python
    [int(4*n*(n+1)/5) for n in range(60)]
    
  • Sage
    [floor(4*n*(n+1)/5) for n in range(60)]
    

Formula

O.g.f.: x*(1 + x^2)*(1 + x)^2/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n-1) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) = a(n-5) + 8*(n-2).
a(5*k+r) = 20*k^2 + 4*(2*r+1)*k + r^2, where 0 <= r <= 4. Example: for r=3, a(5*k+3) = (2*k+1)*(10*k+9), which gives: 9, 57, 145, 273, 441, 649 etc. Also, a(n) belongs to A047462, in fact: for r = 0 or 4, a(n) == 0 (mod 8); for r = 1 or 3, a(n) == 1 (mod 8); for r = 2, a(n) == 4 (mod 8).
a(n) = a(-n) + A047462(n).
a(n) = n^2 - floor((n-2)^2/5).

A128788 a(n) = n^2*9^n.

Original entry on oeis.org

0, 9, 324, 6561, 104976, 1476225, 19131876, 234365481, 2754990144, 31381059609, 348678440100, 3797108212689, 40669853253264, 429575324987601, 4483851321172356, 46325504721296025, 474373168346071296
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Comments

Subsequence of A008854 and A047462. [Bruno Berselli, Feb 07 2013]

Crossrefs

Programs

  • Magma
    [n^2*9^n: n in [0..20]]; // Vincenzo Librandi, Feb 07 2013
  • Mathematica
    CoefficientList[Series[9 x (1 + 9 x)/(1 - 9 x)^3, {x, 0, 30}], x] (* or *) LinearRecurrence[{27, -243, 729}, {0, 9, 324}, 20] (* Vincenzo Librandi, Feb 07 2013 *)

Formula

G.f.: 9*x*(1+9*x)/(1-9*x)^3. - Vincenzo Librandi, Feb 07 2013
a(n) = 27*a(n-1) - 243*a(n-2) + 729*a(n-3). - Vincenzo Librandi, Feb 07 2013
Showing 1-2 of 2 results.