A047463 Numbers that are congruent to {2, 4} mod 8.
2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58, 60, 66, 68, 74, 76, 82, 84, 90, 92, 98, 100, 106, 108, 114, 116, 122, 124, 130, 132, 138, 140, 146, 148, 154, 156, 162, 164, 170, 172, 178, 180, 186, 188, 194, 196, 202, 204, 210, 212, 218, 220, 226, 228, 234
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[ n: n in [2..234 by 2] | n mod 8 in [2,4] ]; // Bruno Berselli, May 11 2011
-
Mathematica
Select[Range[250], MemberQ[{2, 4}, Mod[#, 8]] &] (* Amiram Eldar, Dec 18 2021 *)
Formula
a(n) = 8*n - a(n-1) - 10, with a(1)=2. - Vincenzo Librandi, Aug 06 2010
From Bruno Berselli, May 11 2011: (Start)
G.f.: 2*x*(1+x+2*x^2)/((1+x)*(1-x)^2).
a(n) = 4*n-(-1)^n-3.
Sum_{i=1..n} a(i) = 2*A014848(n).
a(n) = 2*A042963(n-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 + log(2)/8. - Amiram Eldar, Dec 18 2021
Extensions
More terms from Vincenzo Librandi, Aug 06 2010
Comments