A047469 Numbers that are congruent to {0, 1, 2} mod 8.
0, 1, 2, 8, 9, 10, 16, 17, 18, 24, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50, 56, 57, 58, 64, 65, 66, 72, 73, 74, 80, 81, 82, 88, 89, 90, 96, 97, 98, 104, 105, 106, 112, 113, 114, 120, 121, 122, 128, 129, 130, 136, 137, 138, 144, 145, 146, 152, 153, 154
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0..2]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
A047469:=n->(24*n-39-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047469(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 1, 2}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
-
PARI
a(n)=n+(n-1)\3*5-1
Formula
G.f.: x*(1 + x + 6*x^2)/((1 - x)*(1 - x^3)).
a(n+1) = Sum_{k>=0} A030341(n,k)*b(k) with b(0)=1 and b(k) = 8*3^(k-1) for k>0. - Philippe Deléham, Oct 24 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-39-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-6, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)
a(n) = n + 5*floor((n-1)/3) - 1. - Bruno Berselli, Feb 06 2017