A047472 Numbers that are congruent to {0, 1, 3} (mod 8).
0, 1, 3, 8, 9, 11, 16, 17, 19, 24, 25, 27, 32, 33, 35, 40, 41, 43, 48, 49, 51, 56, 57, 59, 64, 65, 67, 72, 73, 75, 80, 81, 83, 88, 89, 91, 96, 97, 99, 104, 105, 107, 112, 113, 115, 120, 121, 123, 128, 129, 131, 136, 137, 139, 144, 145, 147, 152, 153, 155
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 3]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
A047472:=n->8*n/3-4-cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047472(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 1, 3}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *) LinearRecurrence[{1,0,1,-1},{0,1,3,8},60] (* Harvey P. Dale, Aug 31 2024 *)
Formula
Equals partial sums of (0, 1, 2, 5, 1, 2, 5, 1, 2, 5, ...). - Gary W. Adamson, Jun 19 2008
From Colin Barker, Jan 26 2012: (Start)
G.f.: x^2*(1+2*x+5*x^2)/(1-x-x^3+x^4).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = 8*n/3 - 4 - cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-5, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)