cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047472 Numbers that are congruent to {0, 1, 3} (mod 8).

Original entry on oeis.org

0, 1, 3, 8, 9, 11, 16, 17, 19, 24, 25, 27, 32, 33, 35, 40, 41, 43, 48, 49, 51, 56, 57, 59, 64, 65, 67, 72, 73, 75, 80, 81, 83, 88, 89, 91, 96, 97, 99, 104, 105, 107, 112, 113, 115, 120, 121, 123, 128, 129, 131, 136, 137, 139, 144, 145, 147, 152, 153, 155
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 1, 3]]; // Wesley Ivan Hurt, Jun 09 2016
  • Maple
    A047472:=n->8*n/3-4-cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047472(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 1, 3}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
    LinearRecurrence[{1,0,1,-1},{0,1,3,8},60] (* Harvey P. Dale, Aug 31 2024 *)

Formula

Equals partial sums of (0, 1, 2, 5, 1, 2, 5, 1, 2, 5, ...). - Gary W. Adamson, Jun 19 2008
From Colin Barker, Jan 26 2012: (Start)
G.f.: x^2*(1+2*x+5*x^2)/(1-x-x^3+x^4).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = 8*n/3 - 4 - cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-5, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)