A047488 Numbers that are congruent to {0, 2, 3, 5, 7} mod 8.
0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 19, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 43, 45, 47, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 75, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Different from A022342.
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 2, 3, 5, 7]]; // Wesley Ivan Hurt, Jul 31 2016
-
Maple
A047488:=n->8*floor(n/5)+[(0, 2, 3, 5, 7)][(n mod 5)+1]: seq(A047488(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016
-
Mathematica
Select[Range[0,150], MemberQ[{0, 2, 3, 5, 7}, Mod[#,8]]&] (* Harvey P. Dale, Mar 20 2011 *)
Formula
G.f.: x^2*(2+x+2*x^2+2*x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)). [Colin Barker, May 14 2012]
From Wesley Ivan Hurt, Jul 31 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 35 - 2*(n mod 5) - 2*((n+1) mod 5) + 3*((n+2) mod 5) - 2*((n+3) mod 5) + 3*((n+4) mod 5))/25.
a(5k) = 8k-1, a(5k-1) = 8k-3, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)