A047492 Numbers that are congruent to {0, 4, 5, 7} mod 8.
0, 4, 5, 7, 8, 12, 13, 15, 16, 20, 21, 23, 24, 28, 29, 31, 32, 36, 37, 39, 40, 44, 45, 47, 48, 52, 53, 55, 56, 60, 61, 63, 64, 68, 69, 71, 72, 76, 77, 79, 80, 84, 85, 87, 88, 92, 93, 95, 96, 100, 101, 103, 104, 108, 109, 111, 112, 116, 117, 119, 120, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 4, 5, 7]]; // Wesley Ivan Hurt, May 26 2016
-
Maple
A047492:=n->2*n+(1+I)*(2*I-2+(1-I)*I^(2*n)-I^(-n)+I^(1+n))/4: seq(A047492(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
-
Mathematica
Table[2n+(1+I)*(2*I-2+(1-I)*I^(2n)-I^(-n)+I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 26 2016 *) a[n_] := 1 + n + Floor[n/2] + 2 Floor[(n - 2)/4]; Table[a[n], {n, 1, 62}] (* Peter Luschny, Dec 23 2021 *)
Formula
G.f.: x^2*(4+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2*n+(1+i)*(2*i-2+(1-i)*i^(2*n)-i^(-n)+i^(1+n))/4 where i=sqrt(-1).
E.g.f.: (2 - sin(x) - cos(x) + (4*x - 3)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/8. - Amiram Eldar, Dec 23 2021