A047510 Numbers that are congruent to {2, 4, 6, 7} mod 8.
2, 4, 6, 7, 10, 12, 14, 15, 18, 20, 22, 23, 26, 28, 30, 31, 34, 36, 38, 39, 42, 44, 46, 47, 50, 52, 54, 55, 58, 60, 62, 63, 66, 68, 70, 71, 74, 76, 78, 79, 82, 84, 86, 87, 90, 92, 94, 95, 98, 100, 102, 103, 106, 108, 110, 111, 114, 116, 118, 119, 122, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [2, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
-
Maple
A047510:=n->(8*n-1-I^(2*n)-I^(-n)-I^n)/4: seq(A047510(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
-
Mathematica
Table[(8n-1-I^(2n)-I^(-n)-I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
Formula
From Wesley Ivan Hurt, May 27 2016: (Start)
G.f.: x*(2+2*x+2*x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1-i^(2*n)-i^(-n)-i^n)/4 where i=sqrt(-1).
E.g.f.: (2 - cos(x) + 4*x*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - sqrt(2)*log(2*sqrt(2)+3)/16. - Amiram Eldar, Dec 25 2021