cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047519 Numbers that are congruent to {1, 2, 3, 4, 6, 7} mod 8.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [1, 2, 3, 4, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047519:=n->(24*n-15-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n)
    *Pi/6))/18: seq(A047519(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 6, 7, 9}, 50] (* G. C. Greubel, May 30 2016 *)

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7), for n > 7.
G.f.: x*(x^6 + x^5 + 2*x^4 + x^3 + x^2 + x + 1)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (24*n-15-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*sqrt(2)-1)*Pi/16 + log(2)/4 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 28 2021