A047536 Numbers that are congruent to {0, 4, 7} mod 8.
0, 4, 7, 8, 12, 15, 16, 20, 23, 24, 28, 31, 32, 36, 39, 40, 44, 47, 48, 52, 55, 56, 60, 63, 64, 68, 71, 72, 76, 79, 80, 84, 87, 88, 92, 95, 96, 100, 103, 104, 108, 111, 112, 116, 119, 120, 124, 127, 128, 132, 135, 136, 140, 143, 144, 148, 151, 152, 156, 159
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 4, 7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047536:=n->(24*n-15+6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047536(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
LinearRecurrence[{1, 0, 1, -1}, {0, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
G.f.: x^2*(x^2 + 3*x + 4)/(x^4 - x^3 - x + 1). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-15+6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-4, a(3k-2) = 8k-8. (End)