cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047536 Numbers that are congruent to {0, 4, 7} mod 8.

Original entry on oeis.org

0, 4, 7, 8, 12, 15, 16, 20, 23, 24, 28, 31, 32, 36, 39, 40, 44, 47, 48, 52, 55, 56, 60, 63, 64, 68, 71, 72, 76, 79, 80, 84, 87, 88, 92, 95, 96, 100, 103, 104, 108, 111, 112, 116, 119, 120, 124, 127, 128, 132, 135, 136, 140, 143, 144, 148, 151, 152, 156, 159
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 4, 7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047536:=n->(24*n-15+6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047536(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    LinearRecurrence[{1, 0, 1, -1}, {0, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
G.f.: x^2*(x^2 + 3*x + 4)/(x^4 - x^3 - x + 1). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-15+6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-4, a(3k-2) = 8k-8. (End)